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 The present study aims to compare the geometry standards in U.S. Common 

Core State Standards of Mathematics (CCSSM) and Chinese Compulsory 

Education Mathematics Curriculum Standards (CMCS) through the lens of van 

Hiele levels. The study considered a standard unit as one or multiple learning 

expectation(s) and placed each learning expectation into van Hiele levels. By 

examining the van Hiele level distributions of the learning expectations and 

major topics, this study investigated how CCSSM and CMCS propose the 

students' development of geometric thoughts. The findings reveal different 

emphases in geometry learning expectations of CCSSM and CMCS. 

Specifically, (a) Geometry standards in CCSSM are more general, whereas 

geometry standards in CMCS are more specific; (b) CMCS shows a more 

consistent progression through grade bands than CCSSM; (c) CCSSM makes 

more connections between various aspects within a topic and across multiple 

topics than CMCS; (d) CCSSM highlights Dynamic Geometry Environments 

(DGEs), whereas CMCS underscores abstract and rigor at the upper level. 

Implications of this study and suggestions for future revisions for both standards 

are discussed.  

Keywords 

Comparison 
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Introduction 

 

Mathematics standards are a set of learning goals that an authoritative body has set to guide mathematics 

instruction in K–12 educational settings (Reys et al., 2003). In particular, mathematics standards determine what 

topics students are exposed to (Stein et al., 2007) and how deep the topics should be learned (Schmidt et al., 

2001), which impact students' mathematical learning opportunities and, therefore, their mathematics 

achievement. Given the critical role standards play, many countries design and implement standards to stimulate 

curriculum reform. A crucial stage of designing or revising a standard is to refer to or compare with the 

standards in other countries. For instance, the comparisons with standards in top performance countries in the 

Trends in International Mathematics and Science Study (TIMSS) catalyzed the development of the Common 

Core State Standards of Mathematics (CCSSM) (Common Core State Standards Initiative [CCSSI], 2010; Reys, 

2014). As a result, CCSSM was released in response to align with the standards in the top-performing countries 
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in 2011. In this study, we compared geometry standards in CCSSM with the Chinese mathematics standards—

Compulsory Education Mathematics Curriculum Standards (CMCS) (Ministry of Education, 2011). The reason 

we chose the Chinese standards for comparison is that CMCS has remarkable similarities when compared to the 

performance of the top-performance countries, such as Singapore, South Korea, and Japan, regarding topic 

coverage and coherence, though mainland China did not participate in TIMSS (e.g., Wang et al., 2012).  

 

Based on the practical significance of standards, analyses of curriculum standards can inform educational 

practice in improving student learning opportunities (Tran et al., 2016). Tran and colleagues called for more 

research to engage in curriculum standards analysis that enhances students’ learning opportunities. Specifically, 

they called for sensitive enough methods to monitor what content is emphasized, how the content emphasis 

differs from one set of standards to another, and the level of rigor of standards. The van Hiele theory of 

geometric understanding is used as a framework to examine geometry curriculum standards (e.g., Dingman et 

al., 2013; Newton, 2011). Clements (2003) studied K–12 teaching and learning geometry in the United States 

and suggested that the curriculum should promote learning and conceptual change to promote students through 

van Hiele levels. To respond to Tran et al.’s (2016) call and Clements’s (2003) suggestions, this study adopts an 

indirect method, using a framework that integrates Learning Expectations (LE) method and van Hiele levels to 

compare descriptive geometry standards in CCSSM and CMCS. From extant literature, little is known about the 

van Hiele levels of the curricula of the TIMSS top-performing countries, which CMCS closely resembled, 

regarding how geometric topics proceed across grade levels. To fill this gap, in this study, we compare CCSSM 

and CMCS through the lens of van Hiele levels. Specifically, this study investigated How are the standards in 

CCSSM and CMCS framed in van Hiele levels in terms of grade bands and grade level? (Research Question 

#1). In order to provide specific curricular recommendations to improve the student learning opportunities, this 

study also sought to answer the following research question: What are the similarities and differences between 

CCSSM and CMCS in their treatments of selected geometric topics? (Research Question #2). The selection of 

the topics was based on both their prevalent presence and contrasting treatments in both standards.  

 

Relevant Literature  

Analysis Approaches of CCSSM 

 

Tran et al. (2016) reviewed various methods used in analyzing and comparing CCSSM with other standards and 

identified two main categories: the direct method and the indirect method. The direct comparison approach 

directly compares sets of standards regarding topics coverage, cognitive depth of topics, and topic distribution 

across grades. The indirect comparison approach uses a predefined framework to code standards. Different 

methods are designed for their own particular purposes and might reach different conclusions. For instance, 

using a direct method, Schmidt et al. (2005) analyzed top-performance countries' mathematics standards, 

identified the commonalities of learning expectations in these standards, and developed an international 

benchmark called A+ standards. Because standards might be structured differently, content matching standards 

may not contain equal information. Therefore, indirect methods purposefully use a framework to analyze 

standards that capture explicated information. Later, via an indirect method, Schmidt and Houang (2012) used 

the A+ standards as a model to examine the quality of CCSSM by comparing the coverage of topics in each 
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grade level in the CCSSM and A+ model and found that CCSSM had a very high degree of similarity to the A+ 

model regarding coherence and focus.  

 

Learning Expectation (LE) method is another example of an indirect approach that identifies a standard as a 

learning expectation or multiple learning expectations if the standard includes multiple mathematical ideas (Tran 

et al., 2014). For instance, Dingman et al. (2013) used the LE method to examine the similarities and differences 

between K–8 CCSSM standards and pre-CCSSM K–8 standards. Their comparison focused on changes in 

learning expectations and mathematical topics within and across grade levels. They concluded that the current 

CCSSM represents significant changes regarding the grade placement, learning trajectory, and emphasis on 

particular content.  

 

Geometry Standards in CCSSM and CMCS 

 

Compared to pre-CCSSM standards, CCSSM makes considerable changes in geometry. For example, it places 

great emphasis on geometric concepts (Porter et al., 2011), emphasizes conceptual understanding and extensive 

thinking (Conley et al., 2011) and proposes more learning expectations in informal deduction (Dingman et al., 

2013). Researchers also found that throughout grades 6-8, CCSSM increased attention to transformational 

geometry, including the verification of congruence and similarity through a series of transformations (e.g., 

Teuscher et al., 2015; Tran et al., 2014). Dingman et al. (2013) found geometry learning expectations at van 

Hiele level 3 in CCSSM appear over seven times more than other levels in the state standards. They thus 

expected that ―CCSSM will represent a shift for many students from an expectation of lower levels of geometric 

reasoning in prior state standards to a higher level (i.e., more informal deduction) in CCSSM‖ (Dingman et al., 

2013, p. 551). Through comparing CCSSM with A+ curriculum standards, Schmidt and Houang (2012) found 

that CCSSM introduces many geometry topics in grades earlier than the A+ standards. For instance, Perimeter, 

Area & Volume is introduced in Grade 3, while the A+ standards start to introduce this topic in Grade 4.  

 

CMCS is an updated version of previous standards. In contrast to the non-centralized U.S education system, the 

Chinese education system is highly centralized. Since its release, CMCS is the only set of national standards. 

Most content and structure are inherited from the previous standards (Wang et al., 2017). The geometry 

curriculum in CMCS highlights three core concepts, spatial thinking, deduction, and geometric intuition, which 

prepare students to develop geometric experiences toward abstract thinking and rigorous proof (Kong & Shi, 

2012; Ministry of Education Basic Education Curriculum Committee, 2012). Spatial thinking requires students 

to abstract figures from real models, to imagine real objects according to the descriptions, to image relative 

positions of figures, to describe motion and transformation, and to draw figures according to the descriptions 

(Ministry of Education, 2011). CMCS proposes that the development of deductive reasoning should be 

addressed throughout the mathematics learning process. Geometric intuition means using geometric 

visualization to describe and analyze problems. It is an overall understanding and intuition about the geometric 

attributes of an object. Developing geometric intuition requires effective long-term observation, thinking, and 

accumulated experiences (Kong & Shi, 2012).  
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Theoretical Frameworks 

 

The primary theoretical lens for this study is a set of literature on standards curriculum and van Hiele's theory on 

the development of geometric thoughts (van Hiele, 1984; van Hiele-Geldof, 1984). The literature on standards 

curriculum helps to navigate the perspective on standards. The van Hiele levels approach formulates the way of 

examining and analyzing standards. 

 

Theoretical View of Standards  

 

Standards play an essential role in influencing student learning opportunities. Mathematics standards are a set of 

learning expectations that an authoritative body has set to guide mathematics instruction in K–12 educational 

settings (Reys et al., 2003). How content is presented reflects the developers’ theory of how students learn 

mathematics. As Stein et al. (2007) wrote, 

If one believes that mathematics is best learned through student construction based on active 

exploration, one set of criteria will be selected to guide one’s analyses. On the other hand, if one 

believes that mathematics is best learned through direct instruction and skills practice, then review 

criteria will be of a different sort. (p. 327) 

Furthermore, mathematics standards determine the mathematics curriculum about certain topics and the depth of 

topics for teaching and learning (Schmidt et al., 2001; Stein et al., 2007). As most mathematics teachers rely on 

curriculum materials as their primary tool for teaching mathematics, teachers are unlikely to cover a topic 

excluded in standards (Stein et al., 2007). As teachers transform the written curriculum into the implemented 

curriculum (Remillard et al., 2019), students often do not have access to learn content without exposure. Thus, 

the topics covered in a given set of curriculum materials are of fundamental importance for teaching and 

learning (Schmidt et al., 2001).  

 

Another criterion to evaluate standards is coherence. Schmidt et al. (2005) defined standards coherence by 

considering how the standards are sequenced and to what extent such sequence reflects the sequential and 

hierarchical nature of mathematical topics. Coherent standards are ―articulated over time as a sequence of topics 

and performances that are logical and reflect, where appropriate, the sequential and hierarchical nature of the 

disciplinary content from which the subject matter derives‖ (Schmidt et al., 2005, p. 528) toward deeper ideas. 

They also suggested that a set of standards might have multiple coherent sequences that reflect the inherent 

structure of the subject. For instance, Winn et al. (2016) compared the terms used in CCSSM and the Next 

Generation Science and reported that terms of reasoning in CCSSM are inconsistent across grade bands. This 

study examines the coherence of CCSSM and CMCS through the van Hiele levels lens.  

 

van Hiele Levels 

 

Pierre Marie van Hiele and his wife Dina van Hiele-Geldof (1984) identified five levels of thought in geometry. 

These original five levels are called the van Hiele levels. Mayberry (1983) described the five levels as follows: 
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● At level 1, a figure is perceived as a whole, recognizable by its visible form, but the properties of a 

figure are not perceived.  

● At level 2, properties are perceived, but they are isolated and unrelated.  

● At level 3, definitions become meaningful, with relationships being perceived between properties and 

between figures. Logical implications and class inclusions are understood. The role and significance of 

deduction, however, are not understood.  

● At level 4, a deduction is meaningful. The student can construct proofs, understand the role of axioms 

and definitions, and know the meaning of necessary and sufficient conditions.  

● At level 5, a student should understand the role and necessity of indirect proof and proof by 

contrapositive. (Adapted from Mayberry, 1983, p. 59) 

 

Since the 1980s, researchers have used the van Hiele levels as a framework to investigate geometry teaching and 

learning and have suggested that van Hiele theory was a useful tool to examine the geometric concept 

development of students (Fuys et al., 1988; Mayberry, 1983; Senk, 1989; Usiskin, 1982).  

 

Clements (2003) studied K–12 teaching and learning geometry in the United States and suggested that the 

curriculum should promote learning and conceptual change to develop students' van Hiele levels. van Hiele 

theory is also used as a framework to examine mathematics curriculum standards (Dingman et al., 2013; 

Newton, 2011). For example, Newton (2011) investigated the K–8 learning expectations of geometric thinking 

in pre-CCSSM state standards through the lens of van Hiele levels. She concluded that the expectations and 

experiences in K–8 geometry in most state standards at van Hiele level 3 are insufficient to prepare students to 

achieve van Hiele level 4. Thus, she suggested that standards should address more learning expectations at van 

Hiele level 3. Later, Dingman et al. (2013) used van Hiele theory to compare geometry standards in pre-CCSSM 

state standards and CCSSM. They found that CCSSM addresses far more learning expectations at van Hiele 

level 3 than the state standards. For instance, the K–8 descriptive geometry standards are 30% at van Hiele level 

3 in CCSSM compared to 4% in the pre-CCSSM state standards. They concluded that geometry in CCSSM 

presents a significant change. These previous studies on van Hiele theory suggested the illuminating power of 

this framework for comparing curriculum standards. 

 

Methods 

Data Source 

 

We adopted the LE method used by Newton (2011) and Tran et al. (2014). The data in this study are descriptive 

learning expectations in CCSSM and CMCS in three grade bands. Below we define descriptive learning 

expectations and grade bands in detail. 

 

Descriptive Learning Expectation (DLE) 

 

Drawing from Newton (2011) and Tran et al. (2014), we consider a learning expectation to be a standard unit or 

a component of a standard unit. If a standard includes multiple mathematics foci, the standard is split into 
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multiple learning expectations. For instance, the standard unit ―Explain how the criteria for triangle congruence 

(ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions‖ (CCSSI, 2010, p. 76) 

is divided into three learning expectations because it contains three criteria for triangle congruence. In doing so, 

two content matching learning expectations in CCSSM and CMCS contain roughly equal information. Thus, 

relatively comparable data were collected. We consider geometry standards focusing on figures, including 

figures’ properties, the relationships between figures, theorems, and proofs (van Hiele, 1984; van Hiele-Geldof, 

1984;). We adopted Newton’s (2011) definition of descriptive geometry, which refers to ―geometry that is that 

concerned with figures and their relationships, but not with coordinates and exact quantities‖ (p. 80). Unlike 

Newton’s original definition of descriptive geometry that excludes measurement-related topics like the 

perimeter, area, volume, and angle entirely, our descriptive geometry includes the fundamental concepts of 

perimeter, area, volume, and angle. This study uniquely interprets these concepts not from a quantitative 

perspective but as measurable attributes of figures. In this study, a descriptive learning expectation (DLE) is 

defined as a learning expectation representing descriptive geometry, while the learning expectations related to 

measurement and coordinates are not considered.  

 

The two examples below were used to illustrate the inclusive and exclusive of the definition. Example 1 is a 

DLE included in the study because it represents understanding the concepts of area and area measurement. 

Example 2 is a non-DLE that is excluded from the study because it focuses on measurement rather than 

understanding the area. 

Example 1. Recognize area as an attribute of plane figures and understand concepts of area 

measurement. (CCSSI, 2010, p. 25) 

Example 2. Multiply side lengths to find areas of rectangles with whole-number side lengths in the 

context of solving real-world and mathematical problems and represent whole-number products as 

rectangular areas in mathematical reasoning. (CCSSI, 2010, p. 25) 

 

Grade Bands 

 

CCSSM and CMCS have different structures. CCSSM is organized by grade level through K–8 and by 

combined content-based standards in high school. CMCS consists of Grades 1–9 standards and is organized into 

three stages. The first stage is Grades 1–3, the second stage is Grades 4–6, and the third stage is Grades 7–9. 

The first and second stages are the elementary level, and the third stage is the middle school level. CMCS does 

not contain high school standards. At the high school level, Chinese geometry standards include four parts: solid 

geometry, plane analytical geometry, trigonometry, and plane vectors, which do not share much common 

content with CCSSM. Therefore, we did not include Chinese standards at the high school level in this study. 

Regarding comparing between grades or grade bands, Porter et al. (2011) suggested that comparing grade 

aggregation standards makes more sense than comparing each single grade level because the same content may 

not appear in the same grade but may appear in the surrounding grades. Hence, in this study, we defined three 

grade bands for comparison: Lower-Grade Band includes K–3 in CCSSM and Grades 1–3 in CMCS; Middle-

Grade Band includes Grades 4–6 in both CCSSM and CMCS; Upper-Grade Band includes Grades 7–8 and high 

school in CCSSM and Grades 7–9 in CMCS (see Table 1). 
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Table 1. Grade Bands 

 Lower-Grade Band Middle-Grade Band Upper-Grade Band 

CCSSM K–3 Grades 4–6 Grade 7, 8, & high school 

CMCS Grades 1–3 Grades 4–6 Grade 7-9 

 

Coding 

 

There were three stages of coding. In the first stage, two researchers who are literate in both English and 

Chinese languages worked together to identify the DLEs from all geometry learning expectations in CCSSM 

and CMCS. In this stage, the two researchers had a few divergences. In the second stage, drawing on the 

literature of the descriptors and characteristics of van Hiele levels (e.g., Fuys et al., 1988), the two researchers 

identified topics of each van Hiele level to help categorize the level of each learning expectation. The topics also 

reveal geometric topics or geometric ideas explicitly. By comparing a specific topic in a particular grade band, 

detailed information in the CCSSM and CMCS can be explored further. Initial topics were modified in the 

coding process, and new topics emerged while coding. Because both documents do not include learning 

expectations toward van Hiele level 5, this study considers only levels 1-4. Table 2 shows all topics at each 

level. The order of the topics in the same van Hiele level does not matter. Particularly, measurable attributes of 

figures (i.e., perimeter, area, volume, and angle) are recognized under the topic of understanding definitions. 

 

Table 2. Topics at van Hiele Levels 

van Hiele Levels Topics 

Level 1 Recognizing figures 

Composing and decomposing figures  

Level 2 Recognizing figures by their specified attributes  

Understanding relationships between 3D and 2D figures empirically 

Recognizing transformation empirically 

Recognizing definitions empirically  

Level 3 Classifying figures 

Understanding definitions 

Developing informal proofs  

Constructing figures  

Understanding transformation 

Understanding relationships between 3D and 2D figures 

Level 4 Writing formal proofs 
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In the third stage, the two researchers coded DLEs in CCSSM and CMCS in terms of topics independently and 

then met to compare codes and negotiate differences. At this stage, the agreement reached 87%. With the 

discrepancies not reaching a consensus, the third author was involved in the discussion until a consensus was 

reached. 

 

Findings 

 

The total number of DLEs in CMCS was 132, while in CCSSM it was 114. Table 3 shows both frequencies of 

DLEs and the percentages of each level in the total number of DLEs. Both documents have the largest 

proportion of DLEs at level 3—68% in CCSSM and 58% in CMCS. 

 

Table 3. Frequencies and Percentages of DLEs of Each Level 

Standards Level 1 Level 2 Level 3 Level 4 Total 

CMCS 7 (5%) 21 (16%) 76 (58%) 28 (21%) 132 

CCSSM 6 (5%) 14 (12%) 77 (68%) 17 (15%) 114 

 

DLEs by van Hiele Levels Distribution in Grade Bands 

 

We delved into grade/grade bands and examined the distribution of van Hiele levels in the two documents to get 

detailed information about differences and potential causes for differences. Table 4 shows van Hiele level 

distributions among different grade bands.  

 

Table 4. Frequencies and Percentages of DLEs in Grade/Grade Band 

 Lower-Grade Band Middle-Grade Band Upper-Grade Band 

van Hiele Level CMCS CCSSM CMCS CCSSM CMCS CCSSM 

Level 1 6 (60%) 6 (32%) 1 (6%) 0 0 0 

Level 2 4 (40%) 6 (32%) 13 (81%) 4 (33%) 4 (4%) 4 (5%) 

Level 3 0 7 (37%) 2 (13%) 8 (67%) 74 (70%) 62 (75%) 

Level 4 0 0 0 0 28 (26%) 17 (20%) 

Total 10 (100%) 19 (100%) 16 (100%) 12 (100%) 106 (100%) 83 (100%) 

 

CMCS has a distinct pattern based on the percentages of DLEs in each grade band: Lower-Grade Band focuses 

on developing van Hiele level 1 (60%), Middle-Grade Band emphasizes van Hiele level 2 (81%), and Upper-

Grade Band concentrates on developing van Hiele level 3 (70%). This pattern was not found in CCSSM. 

Overall, DLEs in CCSSM at van Hiele level 2 and level 3 are proposed earlier than CMCS. Its DLEs at van 

Hiele level 3 have the greatest percentage in all grade bands. DLEs at van Hiele level 4 come later for both 
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CMCS and CCSSM at the Upper-Grade Band. In subsequent sections, we present more details of the DLE 

distribution in each grade band in these two documents respectively. 

 

Lower-Grade Band DLEs in CMCS and CCSSM 

 

Overall, in the Lower-Grade Band, CCSSM included six (32%) DLEs at level 1, six (32%) DLEs at level 2, and 

seven (37%) DLEs at level 3. CMCS has no DLEs at level 3; it has six (60%) DLEs at level 1 and four (40%) 

DLEs at level 2. Table 5 shows the topic details of DLEs of topics at each van Hiele level. 

 

Table 5. Lower-Grade Band DLEs at Level 1-3 

van Hiele Level Topics CMCS CCSSM 

Level 1 Composing and decomposing figures 1 (10%) 4 (21%) 

Recognizing figures 5 (50%) 2 (11%) 

Level 2 Recognizing figures by their attributes 1 (10%) 6 (32%) 

Understanding transformation empirically 3 (30%) 0 

Level 3 Understanding definitions 0 4 (21%) 

Classifying figures 0 3 (16%) 

Note. The total number of DLEs for CCSSM at Lower-Grade Band is 19 and for CMCS is 10. 

 

The two documents presented DLEs about composing figures quite differently. CCSSM addresses the DLEs 

explicitly and expects students to produce new shapes from the compositions and ―create a composite shape and 

compose new shapes from the composite shape‖ (CCSSI, 2010, p. 16). CMCS proposes one DLE to expect 

students to use specific two-dimensional shapes (rectangles, squares, triangles, parallelograms, and circles) to 

compose new shapes.  

 

From the percentages of the two topics at level 1, we infer that CCSSM expects students to develop an initial 

understanding of the 2D and 3D shapes by manipulation. In contrast, CMCS expects students to recognize 

figures by recognizing the visual clues from real-life objects. At level 2, CMCS proposes the three DLEs 

address transformation by observing and manipulating to perceive reflection, translation, and rotation. In 

contrast, CCSSM does not propose DLEs about transformation. At level 3, CMCS proposes no DLEs. Still, 

CCCSM addresses seven DLEs, including four DLEs about understanding conceptions of area and perimeter 

and three DLEs about understanding quadrilaterals’ hierarchical relations.  

 

Middle-Grade Band DLEs in CMCS and CCSSM 

 

There are significant disparities in the Middle-Grade Band regarding van Hiele level distributions (see Table 6). 

Overall, CCSSM addresses four DLEs (33%) at level 2 and eight DLEs (67%) at level 3. CMCS puts one DLE 

(6%) at level 1 about recognizing line, half-line, and line segment; 13 DLEs (81%) at level 2; and two DLEs 

(13%) at level 3. CMCS focuses on promoting students’ geometric thinking at level 2, while CCSSM tends to 

develop geometric thinking at level 3. Table 6 shows the frequencies of DLEs of topics at level 2 and level 3. 
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Table 6. Middle-Grade Band DLEs at Level 2 and Level 3 

van Hiele 

Level 

Topics CMCS CCSS

M 

Level 2 Recognizing definitions empirically 4 (25%) 0 

Understanding transformation empirically 5 (31%) 0 

Recognizing the relation between 2D-3D 

empirically 

2 (13%) 0 

Recognize figures by their attributes 2 (13%) 4 (33%) 

Level 3 Understanding definitions 0 4 (33%) 

Classifying figures 0 4 (33%) 

Developing informal proof 2 (13%) 0 

Note. The total numbers of DLEs for CCSSM at Middle-Grade Band is 12 and for CMCS is 16. 

 

The disparities of topic distributions are obvious. At level 2, CCSSM only proposes DLEs about recognizing 

figures by their attributes, whereas CMCS has DLEs across all four topics. At level 3, CCSSM proposed DLEs 

about understanding definitions and classifying figures, while CMCS includes DLEs about informal proof. 

 

At level 2, CMCS does not propose formal definitions but expects students to understand parallel and 

perpendicular relations from real life. Both documents present symmetry and symmetric figures. CCSSM 

addresses two DLEs that recognize symmetry as an attribute of some figures and expects students to identify 

line-symmetric figures and draw lines of symmetry. CMCS describes line-symmetry, which is equivalent to 

reflection, as a form of transformation. Thus, unlike how symmetry in CCSSM indicates an attribute of some 

figures, symmetry in CMCS has two meanings: an attribute of some figures and also a form of transformation.  

 

At level 3, similar to DLEs in the Lower-Grade Band, CCSSM addresses the definition of area and perimeter, 

and four DLEs present the definitions of volume and angle. The other four DLEs at van Hiele level 3 are about 

2D figures based on their attributes. CCSSM describes a general criterion of classifying figures. Distinctively, 

the two DLEs in CMCS at van Hiele level 3 expect students, through observations and manipulations, to 

understand the Triangle Angle Sum Theorem and Triangle Inequality Theorem. 

 

Upper-Grade Band DLEs in CMCS and CCSSM 

 

In the Upper-Grade Band, CCSSM and CMCS have the most similarities in van Hiele level distributions (see 

Table 7). Both sets of standards emphasize level 3 and move toward level 4.  

 

At level 3, CMCS proposes 21 DLEs on geometric definitions, whereas CCSSM has 14 DLEs on geometric 

definitions. The two documents share five common definitions: congruence, angle, circle, perpendicular 

line, and parallel line. CCSSM has more transformation-related geometric concepts included as formal 

definitions, such as similarity, rotation, reflection, and translation. On the other hand, CMCS formalizes 

basic geometric concepts, such as isosceles triangle, right triangle, angular bisector, line-symmetric figure, 
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parallelogram, rectangle, rhomboid, square, and tangent line of a circle; these geometric figures do not have 

definitions in CCSSM. CCSSM and CMCS similarly define the common definitions except when defining 

congruence. In terms of the definition of congruence, CCSSM defines congruence from a geometric 

transformation perspective as ―the second can be obtained from the first by a sequence of rotations, 

reflections, and translations‖ (CCSSI, 2010, p. 55). CMCS expects students to understand the congruent 

triangle from the quantitative perspective that corresponding pairs of sides and angles are congruent. The 

next section discusses these in greater detail. 

 

Table 7. Upper-Grade Band Frequencies and Percentages of DLEs in Level 3 

Topics CMCS CCSSM 

Understanding definitions 21(20%) 14 (17%) 

Developing informal proofs 28 (26%) 21 (25%) 

Understanding transformation 6 (6%) 10 (12%) 

Constructing figures 17 (16%) 14 (17%) 

Understanding relationships between 3D and 2D 

figures 

1 (<1%) 3 (4%) 

Classifying figures 1 (<1%) 0  

Total 74 (70%) 62 (75%) 

Note. The total number of DLEs for CCSSM at Upper-Grade Band is 83 and for CMCS is 106. 

 

Regarding developing informal proof, CCSSM has 21 DLEs, while CMCS has 28 DLEs at level 3, which 

expects students to understand and explore theorems and postulates informally. They shared the most 

common DLEs in informal proof, including the Pythagorean theorem and its converse; the criteria for 

triangle congruence; supplementary, complementary, vertical, and adjacent angles; the relationship between 

central, inscribed, and circumscribed angles; and the criterion for similar triangle.  

 

At level 4, CCSSM addresses 17 DLEs of formal proof in high school. In CMCS, there are 28 DLEs of 

formal proof in the Upper-Grade Band. The two documents share common theorems, including segment 

perpendicular bisector theorem and its converse, parallel lines theorems, and the converse of parallel lines 

theorems, parallelogram theorems, and converses. CMCS includes angle bisector theorem and its converse, 

theorems of equilateral triangles, theorems of rectangles, rhombi, squares, and perpendicular diameter 

theorem, which are not in CCSSM. Simultaneously, CCSSM has a DLE of using triangle similarity to prove 

the Pythagorean theorem, which does not appear in CMCS. 

 

 

Comparisons of Selected Geometric Topics within and Across Grade Bands and Levels 

 

In this section, we focus on reporting three geometric standards that are presented in most distinct ways by 

CCSSM and CMCS, including (a) recognizing and classifying figures, (b) transformation, and (c) constructing 
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figures. We selected these three topics because they were prevalent in both standards and they provided 

contrasting treatments to illuminate the significant differences between these two standards.  

 

Recognizing and Classifying Figures 

 

CCSSM proposes six DLEs at van Hiele level 2 and expects students to recognize figures by their attributes, 

while CMCS addresses one DLE for recognizing figures by attributes: ―through observing and manipulating, 

recognize the attributes of squares and rectangles‖ (p. 19). Specifically in CCSSM, students are expected to 

―analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal 

language to describe their similarities, differences, parts (e.g., number of sides and vertices/―corners‖) and other 

attributes (e.g., having sides of equal length)‖ (CCSSI, 2010, p. 12) as early as in Grade K. In Grade 2, students 

are expected to ―recognize and draw shapes having specified attributes, such as a given number of angles or a 

given number of equal faces‖ (CCSSI, 2010, p. 20). Like DLEs at van Hiele level 1, at level 2 CCSSM 

continues to emphasize manipulation and encourages students to build and draw. CMCS focuses only on 2D 

shapes and specifies the attributes of squares and rectangles. CMCS proposes that the other three DLEs address 

transformation by observing and manipulating to perceive reflection, translation, and rotation. In contrast, 

CCSSM does not propose DLEs that address transformation. We will discuss more details about the differences 

later. 

 

Classifying figures is another topic that is presented in the two documents with significant disparity. CCSSM 

addresses seven DLEs across the Lower-Grade Band and Middle-Grade Band, while CMCS addresses only one 

DLE in the Upper-Grade Band, which expects students to understand hierarchical relationships among 

parallelogram, rectangle, rhombus, and square. In Grade 3, CCSSM proposes DLEs at level 3 to expect students 

to classify quadrilaterals according to their attributes (angles and sides) and ―understand that shapes in different 

categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides) and that the 

shared attributes can define a larger category (e.g., quadrilaterals)‖ (p. 26). CCSSM addresses six DLEs of 

recognizing figures by their attributes to promote students’ understanding of figures’ attributes (i.e., angles, 

sides, and relations between them). 

 

Later in the Middle-Grade Band, in Grade 4, CCSSM proposes two DLEs: ―classify two-dimensional figures 

based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a 

specified size‖ (p. 31), to continue developing students’ understanding on classifying figures. In Grade 5, 

CCSSM addresses one DLE to promote students’ understanding of hierarchical relations among figures and 

expects students to ―understand that attributes belonging to a category of two-dimensional figures also belong to 

all subcategories of that category‖ (p. 38). 

 

If we consider only the distribution of DLEs of this particular topic, they are consistent and coherent across 

grade levels in CCSSM. However, according to Mayberry (1983), unless students achieve van Hiele level 3, 

they should be expected to understand hierarchical relationships among figures and class inclusions. Therefore, 
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further investigation is needed to determine whether DLEs of classifying figures placed in the Lower-Grade 

Band are too early in CCSSM, as students haven’t yet achieved van Hiele level 3.  

 

Transformation 

 

Transformation in both documents consists of reflection, translation, rotation, and dilation. Regarding 

transformation, CCSSM proposes three DLEs in Grade 8 at van Hiele level 2 and 10 DLEs at level 3 in high 

school and does not set DLEs before Grade 7. In Grade 8, CCSSM poses DLEs about transformation to expect 

students to recognize transformation empirically. The DLEs expect students to recognize transformations from 

motions of their attributes. After the first introduction of transformation in Grade 8, CCSSM reinforces the topic 

in high school at level 3: 

Represent transformations in the plane using, e.g., transparencies and geometry software; describe 

transformations as functions that take points in the plane as inputs and give other points as outputs. 

Compare transformations that preserve distance and angle to those that do not (e.g., translation versus 

horizontal stretch). (CCSSI, 2010, p. 76) 

Similarly, CMCS provides formal definitions of transformation in the Upper-Grade Band at van Hiele level 3. 

The difference is that CMCS prioritizes students’ understanding and prepares students to experience 

transformation in the Lower-Grade Band and Middle-Grade Band. For instance, in the Lower-Grade Band, 

CMCS states, ―experience translation, rotation, and reflection from real life‖ (Ministry of Education, 2011, p. 

19). In the Middle-Grade Band, CMCS is more explicate: ―through observations and manipulations, recognize 

figures’ translation and rotation on grid paper, translate basic figures vertically or horizontally on grid paper, 

rotate basic figures to 90° on grid paper‖ (Ministry of Education, 2011, p. 24). Transformation in CMCS is 

consistent and coherent throughout the three grade bands.  

 

In brief, the two documents emphasize transformation differently. CMCS presents transformation crossing 

grade bands and van Hiele levels, reflecting curricular coherence (Schmidt et al., 2005). CCSSM introduces 

transformation in grade 8. Based on empirical understanding of transformation, in high school, CCSSM 

introduces the concepts of congruence and similarity. Differently, transformation in CMCS does not have an 

explicate connection with congruence and similarity. Transformation in CMCS is most likely an independent 

topic, while in CCSSM it serves as a foundation for congruence and similarity.  

 

Constructing Figures 

 

Constructing figures is the topic in which CCSSM and CMCS have many common DLEs but which are 

presented differently. CCSSM has 14 DLEs, and CMCS has 17 DLEs on constructing figures. They are all in 

the Upper-Grade Band at van Hiele level 3. In particular, the two documents share common constructions, 

including copying a segment, copying an angle, bisecting a segment, bisecting an angle, and constructing a 

tangent line from a point outside a given circle to the circle. Regarding constructing tools, DLEs in CCSSM are 

more open and flexible than CMCS. For example, CCSSM expects students to draw ―freehand, with ruler and 

protractor, and with technology‖ (CCSSI, 2010, p. 50), while CMCS expects students to ―use straightedge and 
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compass‖ (Ministry of Education, 2011, p. 35), indicating CMCS has a higher expectation on students’ 

geometric construction. However, while using a compass and straightedge or ruler to construct figures could 

reinforce students’ geometric understanding, various tools can also provide insightful visualization, particularly 

in a dynamic geometry environment. Using geometric software features could promote geometric visualization 

and then improve students’ geometric intuition (Sinclair, 2008).  

 

The DLEs in CCSSM tend to provide more opportunities for students to explore geometric theorems. For 

instance, students are expected to ―focus on constructing triangles from three measures of angles or sides, 

noticing when the conditions determine a unique triangle, more than one triangle, or no triangle‖ (CCSSI, 2010, 

p. 50). Here, the standards do not specify the three measures of angles or sides, which offered students more 

space to discover the principles for constructing a unique triangle and would be able to explain why some 

conditions can be criteria for triangle congruence and others cannot be. In contrast, CMCS expects students to 

construct triangles by giving ―three sides, two sides and inner angle, and two angles and inner side‖ (Ministry of 

Education, 2011, p. 35). This may direct students to the theorems but impedes students’ autonomy in learning. 

 

The DLEs on constructing figures in both CCSSM and CMCS aim to prepare students’ further geometric 

understanding. For example, the formal geometric construction of the perpendicular bisector of a line segment 

aligns with the segment perpendicular bisector theorem and its converse, which are at van Hiele level 4 in both 

documents. However, the DLEs in CMCS are more specific, which often correspond to definitions, postulates, 

and theorems. In comparison, the DLEs in CCSSM are less focused and inconsistent. To illustrate this 

inconsistency, we again used the example of constructing triangles from three measures of angles or sides as 

above. This DLE is in Grade 7. However, no DLEs about congruence appear within grade 7. Further, no DLEs 

about criteria for a triangle appear in grade 8. By high school, students are expected to ―explain how the criteria 

for triangle congruence follow from the definition of congruence in terms of rigid motions‖ (CCSSI, 2010, p. 

76). It may prove difficult for students to meet this expectation without knowing congruence and criteria for a 

triangle. 

 

Discussion 

 

The findings revealed the distribution of van Hiele levels and topics in CCSSM and CMCS in grade bands and 

grade levels. In terms of geometry content, the two documents show great similarity, and both present Euclidean 

geometries. However, from the lens of van Hiele levels, there are divergences regarding the emphasis in 

geometry learning. CCSSM emphasizes getting experiences in an informal deduction from multiple ways, 

including understanding geometry concepts in an earlier grade, using geometry software, and providing an 

opportunity for students to explain their thoughts. In contrast, CMCS highlights promoting geometric intuition 

through accumulating experiences from observations and manipulations (Kong & Shi, 2012). Although both 

documents share major geometric topics, such as congruence and similarity, transformation, and geometric 

construction, they present differently based on their own particular emphases. We discuss these differences in 

the following four ways.  
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First, geometry standards in CCSSM are more general, while geometry standards in CMCS are more specific. 

CMCS specifies learning expectations, for instance, in a certain grade band, what figures students need to 

recognize, and what approaches students would use. For instance, in the Middle-Grade Band, CMCS proposed 

that students "through observation and manipulation recognize parallelogram, trapezoid, and circles, know 

sectors, and can use a compass to draw circles" (p. 25). Standards in CCSSM are more general, and approaches 

are broader. For example, in Grade 2, CCSSM expects students to ―recognize and draw shapes having specified 

attributes, such as a given number of angles or a given number of equal faces‖ (p. 20). The standard does not 

indicate specific figures and tools to draw figures. Another example is classifying figures; CMCS expects 

students to understand hierarchical relationships between parallelogram, rectangle, rhombus, and square, while 

CCSSM addresses a broader expectation that students ―classify two-dimensional figures in a hierarchy based on 

properties‖ (p. 32). 

 

Second, while both CMCS and CCSSM have the greatest number of DLEs at level 3, the distributions of the 

four levels across grade bands are quite different. CMCS shows more consistent progression through grade 

bands with the majority of DLEs at the Lower-Grade Band on level 1, Middle-Grade Band on level 2, and 

Upper-Grade Band on level 3, while CCSSM is less consistent, with the majority of DLEs in Kindergarten at 

level 1, from Grades 1–2 the majority of DLEs at level 2, and from Grades 3–8 and high school the majority of 

DLEs at level 3. Compared to CMCS, CCSSM does not set sufficient DLEs at van Hiele level 2. Previous 

research revealed that pre-CCSSM geometry standards did not propose sufficient DLEs at van Hiele level 3 to 

prepare students in developing informal proof (Newton, 2011). Our finding aligns with Dingman et al.’s (2013) 

claim that CCSSM puts most effort at van Hiele level 3. However, for some topics, there is a lack of preparation 

at van Hiele level 2. For instance, CCSSM proposes DLEs at level 3 in Grade 3 to expect students to develop a 

primary hierarchical understanding of different categories of quadrilaterals. However, these DLEs may not be 

effective unless students are prepared well in van Hiele level 2 to perceive the relations between a figure and its 

attributes through manipulation or real-life models. Without sufficient preparation in level 2, students may not 

be grounded in basic geometric concepts and may not understand the language used in level 3 (Fuys et al., 

1988). As such, memorization may be their only resource, but it does not help with understanding reasoning and 

geometric language at a higher level, which may cause frustration and discouragement (Burger & Shaughnessy, 

1986). 

 

Third, CCSSM makes more connections between various aspects of the same topics or between different topics. 

An example of CCSSM’s focus on connections can be seen from its treatment of Transformation, Congruency, 

Similarity, and Symmetry. These concepts are built on the perspective of geometric transformation. 

Congruence, similarity, and symmetry represent one or more combinations of geometric transformation. 

Conversely, geometric transformations can explain these concepts or decide if two figures are similar, 

congruent, or symmetric. Transformation in CMCS is most likely an independent topic and less related to 

congruence and similarity. Historically, there are many debates around these two approaches of definitions of 

congruence and similarity. Usiskin and Coxford (1972) argued that the definitions of congruence as the same 

shape and same size, while mathematically precise, lacked the generality that intuition normally ascribes to the 

related ideas. Some researchers have suggested transformation should be the basis of high school geometry 
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because the transformation approach emphasizes intuitive thinking and visual processes (e.g., Sinclair, 2008; 

Usiskin & Coxford, 1972). To seek the influence of the two approaches, a further discussion around definitions 

is needed. 

 

Fourth, CCSSM and CMCS use different means to prepare students for formal proofs. CCSSM highlights 

Dynamic Geometry Environments (DGEs), while CMCS underscores abstract and rigor at the upper level. 

CCSSM encourages infusing technology in mathematics teaching and learning, in particular, creating DGEs by 

incorporating geometric software. In high school, CCSSM suggests using dynamic geometric software to make 

formal geometric construction. Although CMCS also emphasizes the importance of technology in mathematics, 

using technology is absent in geometry. Researchers have argued that technology can be used as an intervention 

to provide visualization and constructive techniques that allow students to develop and validate conjectures and 

stimulate students to provide deductive explanations (e.g., Sinclair, 2008; Sinclair et al., 2017; Wares, 2007).  

 

The discussed differences between CCSSM and CMCS reflect the difference in the geometry curriculum 

philosophy in the two nations. The descriptions of geometry standards in CCSSM are more general, while 

geometry standards in CMCS are relatively explicit. Both CMCS and CCSSM underscore learning expectations 

at van Hiele level 3. Through van Hiele levels, CMCS is more coherent throughout three grade bands, while 

CCSSM makes more connections between various aspects of the same topics or between different topics. 

CCSSM holds open attitudes on various multiple geometric learning tools, while CMCS stresses abstract and 

rigor aspects of geometry. Overall, CCSSM and CMCS expect students to achieve formal deduction from 

different means of preparation. In terms of proceeding through van Hiele levels, CCSSM proposes higher-level 

DLEs earlier than CMCS. CMCS is more consistent than CCSSM in moving from a lower to a higher van Hillel 

level when introducing the same topic over multiple grade bands. 

 

Conclusion 

 

The results of this study show that CCSSM and CMCS have significant differences. They both support van 

Hiele theory in their own ways. CCSSM expects students to make adequate preparation at van Hiele level 3 to 

reach formal deduction, which aligns with van Hiele’s theory that prepares students enough in informal proof to 

move forward to the formal deduction. CMCS emphasizes abstract thinking and expects students to develop 

theoretical reasoning through constructing definitions, postulates, and theorems systems, which supports van 

Hiele’s proposal that students should understand the meaning of deduction and construct mathematical proofs 

using propositions, axioms, and theorems (van Hiele, 1984; van Hiele-Geldof, 1984).  

 

One limitation of this study is that it did not compare the quantitative aspect of the geometric measurements, 

which is also an essential area in the geometry curriculum. In future studies, general geometry should be 

considered to make a strong case of the standards’ influence. CCSSM is structured by grade level from K–8 and 

integrated into high school, while CMCS is organized by grade bands. CCSSM consists of high school 

standards, but CMCS does not. Though these two documents share the most common content, it is hard to 
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compare through grade level. We acknowledge this is another limitation of this study. Future investigation of 

textbooks by grade level would shed additional light of the geometry learning in these two curricula. 

 

The present study contributes to a growing body of literature on standard analyses. Specifically, the study 

established the feasibility of using topics at each van Hiele level to support examining geometry standards. The 

findings also add to the comparison literature between the U.S and China in mathematics education. Although 

this study does not focus on explaining the causality of differences between standards, textbooks, teaching, and 

learning in these two nations, the cross-national comparison of standards could stimulate curriculum 

development. For the further revision of CCSSM and CMCS, we suggest CCSSM add more DLEs in van Hiele 

level 2 to better prepare students for formal geometric concepts. CMCS could add multiple geometric learning 

tools. Particularly, given the importance and innovation of DGE in geometry learning, CMCS should consider 

integrating DGE in the geometry curriculum to promote students’ visualization, conjecture, and reasoning.  
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