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 Recent standards reform documents across the globe have called for statistical 

literacy by the end of high school. Thus, it is important for teachers to develop 

a deep understanding of the content. Despite the relatively thick literature base 

connecting students‘ content knowledge and reasoning, research on these 

connections among practicing teachers is in critical need. Our study 

contributes to this lack of research by examining the knowledge structures and 

statistical reasoning—and possible ways knowledge structures supported 

reasoning—of a stratified purposeful sample of nine middle and secondary 

mathematics teachers as they responded to released items from the Levels of 

Conceptual Understanding in Statistics (LOCUS) assessment during two 60–

90 minute task-based clinical interviews. Knowledge structures were 

categorized as compatible-connected, incompatible-connected, and 

incompatible-disconnected. Teachers with less incompatible knowledge 

elements in their structures engaged more frequently in reasoning coded as 

sound. However, teachers frequently engaged in both sound and unsound 

forms of reasoning on the same task item. Implications are offered for teacher 

education and future research. 
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Introduction 
 

Recent calls for research into teachers‘ statistical knowledge and reasoning (e.g., Biehler, Frischemeier, 

Reading, & Shaughnessy, 2018; Groth & Meletiou-Mavrotheris, 2018) appear amid expectations of statistical 

literacy, as evidenced through standards and curriculum documents internationally (e.g., Australian Curriculum 

Assessment and Reporting Authority [ACARA], 2014; England Department of Education, 2014; Franklin et al., 

2007; Ministry of Education Singapore, 2012; National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010). Despite calls for statistical literacy, there is convincing evidence 

that many teachers do not feel prepared to teach the statistics content required of them—according to both of 

Banilower and colleagues‘ (2018, 2013) nationally representative surveys of elementary and secondary 

mathematics teachers in the US. This is likely due to how recent such standards and curriculum reform 

documents have called for statistical literacy—which requires a deeper level of understanding of statistics 

content than they likely had the opportunity to learn in their tertiary coursework (Alkas Ulusoy & Kayhan Altay, 

2017; Castro Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007; delMas, Garfield, Ooms, & Chance, 

2007). In order to address the lack of research on how mathematics teachers‘ statistical reasoning may be related 

to their statistical knowledge, this study aims to develop a deeper understanding of these relationships. More 

specifically, the following research questions guided this study: 

1. What knowledge structures do middle level and secondary mathematics teachers have, regarding center, 

spread, and shape of distributions? 

2. In what ways do middle level and secondary mathematics teachers‘ knowledge structures support their 

statistical reasoning? 

 

 

Background and Theoretical Framework 
 

Over the past twenty years, researchers have consistently found that after completing a tertiary course in 

statistics, most students have not constructed more sophisticated ways of thinking (Castro Sotos et al., 2007; 

delMas et al., 2007; Falk & Greenbaum, 1995). Some have been found to be confident in their errors (Castro 

Sotos, Vanhoof, Noortgate, & Onghena, 2009) and others developed new misconceptions not evident at the 
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beginning of the course (delMas et al., 2007). It has further been observed that instructors may frequently 

exhibit the same misconceptions as their students (Haller & Krauss, 2002). These findings indicate that teachers 

are not likely to have a strong background in statistics. This is perhaps the reason why so little research has been 

conducted around practicing teachers‘ statistics knowledge. The next sections will address first our theoretical 

stance on knowledge and then progress to describe compatible and incompatible ways of thinking about center, 

spread and shape of distributions that have been documented in the literature. Finally, we provide some 

discussion of an important mode of inquiry that has been successful in other research in studying and attempting 

to map knowledge structures. 

 

 

Theoretical Stance on Knowledge 

 

Epistemologically, we take a constructivist stance in this study, that knowledge is constructed and that learning 

occurs through integration of newly constructed knowledge elements into one‘s cognition (Herscovics, 1996; 

Sen & Ay, 2017). Thus, existing knowledge structures, including all its inconsistencies and perceived flaws, are 

viewed as guiding the extension of new ways of thinking (Duit, 1992, as cited in Booker, 1996). von Glasersfeld 

(1991) argued that, as a result, knowledge could be assumed when a person responds ―in ways that seem 

compatible‖ with one‘s own understanding (p. 5). Therefore, we use the terms compatible and incompatible to 

describe knowledge that may support or limit broader conceptions. Moreover, we extend this idea further by 

relating it to whether the observed knowledge element is compatible or incompatible with the knowledge as it is 

described in the literature base. Other scholars have utilized similar terms to describe knowledge, such as 

Moschkovich (1999) and Hohensee & Jansen (2017) who used the terms conception and transitional 

conception. However, these terms were defined in the context of a more longitudinal study design, and therefore 

were not useful for the present study.  

 

 

Knowledge of Center 

 

In a literature review conducted by Jacobbe and Carvalho (2011), teachers and preservice teachers were 

generally found to 1) have a procedural understanding of measures of center and to prefer algorithms when 

asked about the center, 2) struggle to make connections between different measures of center, 3) prefer the mean 

over other measures, and 4) struggle to flexibly apply computations and consider effects of the outliers, 

distribution, and context on the result. As also found by Jacobbe and Carvalho (2011), Leavy and O‘Loughlin‘s 

(2006) study of preservice teachers‘ conceptions of mean found that a majority do not distinguish between the 

words ―average‖ and ―mean.‖ Despite these deficit findings, at least two studies described a range of conception 

types, one of which separated them into hierarchical levels to help understand the types of conceptions teachers 

may have and what limitations they inherently impose. Gfeller, Niess, and Lederman (1999) found that when 

solving problems involving the arithmetic mean, mathematics and science preservice teachers made use of either 

a procedural understanding or a ―fair share‖ understanding—which the GAISE report (Franklin et al., 2007) 

places at the lowest level of understanding—which involved balancing deviations. Perhaps more useful in 

distinguishing conceptions, Groth and Bergner (2006) used the SOLO Taxonomy (Biggs & Collis, 1982) to 

describe preservice elementary teachers‘ thinking, when comparing mean, median, and mode, across four 

hierarchical levels: 

 Unistructural: procedural understanding only; 

 Multistructural: procedural with a recognition that all are analysis tools (but with no specification of what 

they measure); 

 Relational: indicates that all are measures of center or represent what is typical for a dataset; 

 Extended abstract: includes description of when each measure might be more useful than another (Groth 

& Bergner, 2006, p. 51) 

Groth and Bergner‘s (2006) findings align with others in that most of the teachers were at the multistructural 

and relational level, indicating that the vast majority were not able to describe salient differences in measures of 

center. Moreover, it is important to note that understanding when, for instance, the median might be more useful 

than the mean requires relating conceptions of center and shape (e.g., skewed, symmetric). 

 

 

Knowledge of Spread 

 

The empirical study of teachers’ conceptions of spread is fairly recent in the literature, relative to investigations 

of students’ conceptions. However, Langrall and colleagues‘ (2017) review of frameworks that have been used 

to study levels of sophistication in primary and secondary students‘ conceptions of variability all required the 
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―integration of concepts and the ability to attend to and coordinate multiple aspects of the data being examined‖ 

(p. 495) among the highest levels of reasoning. It is noteworthy that Langrall and colleagues (2017) made no 

mention of studies that focused on teachers‘ knowledge of variability, but instead referred readers to the book 

Teaching statistics in school mathematics-Challenges for teaching and teacher education: A Joint ICME/IASE 

Study (Batanero, Burrill, & Reading, 2011). In Batanero and colleagues‘ (2011) volume, Sánchez, Silva, and 

Coutinho (2011) wrote the literature review chapter on variability, titled Teacher’s Understanding of Variation, 

and cited a total of four studies explicitly involving teachers—the most relevant of which was Silva and 

Coutinho (2008). In their literature review, Sánchez, Silva, and Coutinho (2011) extract four hierarchical levels 

of reasoning from Silva and Coutinho (2008), which are paraphrased below: 

 Level 1 (idiosyncratic): calculating mean and standard deviation without indicating knowledge of what 

they mean 

 Level 2 (verbal reasoning): ―perception of variation; understanding the standard deviation as the measure 

of the difference between the values of the data; the idea that low standard deviation is better and 

recognizing there are quantities of values within one standard deviation interval from the mean.‖ (p. 3) 

 Level 3 (transitional reasoning): using at least two summary statistics, such as ―maximum and minimum 

values, mode and the graph representation itself‖, many times leaving out standard deviation and not 

completely integrating the ideas (p. 4) 

 Level 4: (procedural reasoning): standard deviation as measure of deviation from the mean without 

estimating ―a percentage of the observations in this interval‖ (p. 5) 

These hierarchical levels echo Langrall and colleagues‘ (2017) description that higher sophistication in 

conceptions of variability require consideration of multiple knowledge types (e.g., spread around a center as 

opposed to only referring to the range). 

 

 

Knowledge of Shape 

 

It is important to note that many studies around the conception of shape are studies also of variability. 

Moreover, as a concept integral to thinking about distribution, shape tends to involve integration of center and 

spread (Bakker & Gravemeijer, 2004; Ekol, 2015; Pfannkuch & Reading, 2006; Reading & Canada, 2011). For 

instance, a symmetric distribution with a high peak might be described as ―tight‖, indicating a narrow spread as 

well as a general location of multiple measures of center. For this reason, ideas of distribution cannot easily be 

isolated and reasoning about distribution is a complex process (Pfannkuch & Reading, 2006). Moreover, the 

notion of shape is just one of many conceptions included in the literature on distribution, and is widely accepted 

to involve ―features such as center, spread, density, skewness, and outliers but also involves other ideas such as 

sampling, population, causality and chance‖ (p. 4), and thus distribution has been referred to as being located 

within a ―web of statistical knowledge‖ (Reading & Canada, 2011, p. 224). However, some ideas relating to 

shape (as well as center and spread) from the literature on teachers‘ conceptions of distribution are helpful to 

inform this study. One common misunderstanding students and teachers appear to have is that skewed 

distributions will be more variable than symmetric distributions (delMas & Liu, 2005; Doerr & Jacob, 2011). 

For example, Doerr and Jacob (2011) studied a group of secondary practicing and prospective mathematics 

teachers, as well as mathematics education doctoral students. Some common misunderstandings they claimed 

teachers exhibited regarding variability and shape were: 

1. not attending to how skewness impacts standard deviation when comparing two skewed distributions in 

which one is more strongly skewed, 

2. judging symmetric distributions to have a smaller standard deviation than a non-symmetric distribution 

with a much smaller range and similar mean, and 

3. more clearly indicating that symmetry ―minimizes standard deviation‖ (pp. 780–781). 

These findings led Doerr and Jacob to conclude that ―some teachers had difficulty interpreting skewed 

distributions and tended to inappropriately choose symmetric normal distributions‖ (p. 784). A consistent 

finding across studies regarding center, spread, and shape is that more sophisticated forms of reasoning are 

evidenced by the integration of multiple concepts—both within and between knowledge element types (center, 

spread, shape). Therefore, this study attempts to understand teachers‘ integration of these knowledge element 

types and how such integration may support their reasoning. As a result, it is important to consider how other 

studies have examined students‘ or teachers‘ knowledge structures. 

 

 

Measuring and Mapping Knowledge Structures 

 

The notion of mapping a person‘s knowledge structure is an important consideration because of my 

epistemological perspective that requires viewing the knowledge a person might have along with all of its 
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inconsistencies. This is not a new concept and has been used in mathematics education for many years in the 

study of, for instance, students‘ and teachers‘ fractional reasoning (e.g., Izsák, 2008; Steffe, 2001). Regarding 

statistics content, two studies of importance have used such methods. Ron, Dreyfus, and Hershkowitz (2010, 

2017) conceptualized the perspective of partially-correct constructions (PaCCs) because they were confronted 

with a situation in which students were exhibiting unexpected contradictions in their observed knowledge. They 

defined a PaCC as ―a construct that only partially matches a corresponding intended knowledge element‖ (p. 

69). In this way, they identified all possible constructions and used a content analysis to identify intended 

knowledge elements from which to decide if an observed knowledge element was constructed in the intended 

way or not. Moreover, these knowledge elements are intended to have observed connections between them, in 

part, because the original purpose was to trace learning over time and thus understand the process of knowledge 

construction. Building upon Ron and colleagues‘ (2010) perspective of knowledge structures as PaCCs, Groth 

and Bergner (2013) incorporated node-link diagrams in their study of elementary preservice teachers‘ 

knowledge structures for teaching nominal categorical data analysis. Development of visual representations of 

knowledge structures allowed Groth and Bergner to conduct a finer-grained analysis, and understanding, of 

participants‘ knowledge. Therefore, this study first employs an examination of knowledge structures in order to 

establish a deeper understanding of teachers‘ knowledge, including its inconsistencies, so that potential supports 

for teachers‘ reasoning may then be more accurately inferred. 

 

 

Method 
 

Because we sought to collect the full range of settings in which statistics is taught by middle level and 

secondary mathematics teachers (teachers of students aged 11–18), the overall design used to address the 

research questions first involved recruiting a stratified purposeful sample (Patton, 2002). Recruitment extended 

across four strata—teachers who had taught an Advanced Placement (AP) statistics course (N = 2), a non-AP 

statistics course (N = 2), at least one unit of statistics in the context of a secondary mathematics course (N = 2), 

and at least one unit of statistics in the context of a middle level mathematics course (N = 3). AP Statistics 

courses cover similar content to that of a tertiary course in statistics at the undergraduate level (e.g., hypothesis 

testing). Data was collected through a task-based clinical interview design (Goldin, 1997) and analyzed using a 

cross-case analysis (e.g., Groth & Bergner, 2013) to identify patterns across knowledge structures (RQ1) and to 

distinguish the ways knowledge structures may provide support for statistical reasoning (RQ2). 

 

 

Participants and Setting 

 

Participants were recruited in order to achieve a stratified purposeful sample (Patton, 2002). Recruitment 

intensely focused on mathematics teachers at the middle and secondary level who had taught statistics content 

that explicitly included data analysis, such as calculating summary statistics, to make decisions based on the 

data. The resulting nine teachers who participated in this study were uniformly spread across the four strata and 

taught in middle level and secondary schools in the Midwestern portion of the US. All nine teachers held 

Bachelor‘s degrees in either Mathematics or Mathematics Education, Master‘s degrees in education-related 

fields, and had completed at least one tertiary course in statistics (see Table 1).  

 

Table 1. Study participant backgrounds 

Teacher 

Course Statistics 

Taught In Most 

Recently 

Grade 

Level 

of 

Course 

Years 

Teaching 

Mathematics 

Years 

Teaching 

Statistics 

Undergraduate 

Statistics 

Courses 

Graduate 

Statistics 

Courses 

Statistics 

Specific 

PD 

Kathy 

6th Grade 

Mathematics 6 4 4 1 1 Several 

Ruby 

Pre-Algebra & 

Algebra I 8 10 10 2 0 None 

Amalia Algebra I 9 4 3 1 1 None 

Harrison 

Pre-Algebra & 

Algebra I 8-9 12 5 1 0 None 

Ellie 

Pre-Algebra & 

Honors Geometry 8 3 3 2 0 None 

Machaela Non-AP Statistics 12 9 1 (3 as unit) 1 0 None 

Mike AP Statistics 11-12 13 2 (7 as unit) 2 1 Once 

Rosalynn AP Statistics 10-12 11 4 (7 as unit) 1 10 Extensive 

Tim Non-AP Statistics 12 14 5 (10 as unit) 1 0 None 
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In contrast, there was a large amount of variability in their teaching experience in mathematics, but much less 

variability in experience in teaching statistics. Moreover, statistics teaching experience was not concentrated at a 

specific grade band or stratum. 

 

 

Data Sources 

 

GOALS-2 

 

Data came from two sources. To aid in answering the first research question, the Goals and Outcomes 

Associated with Learning Statistics (GOALS-2) assessment (Sabbag & Zieffler, 2015) was first used to gain 

baseline data on the extent of the formal knowledge participants held that would traditionally be included in a 

tertiary course, as well as to confirm knowledge elements found during analysis of other sources. The GOALS-2 

was developed from items from the Comprehensive Assessment of Outcomes in Statistics (CAOS) assessment 

(delMas et al., 2007), which has been shown to be psychometrically valid and reliable. GOALS-2 includes 20 

forced-choice items on topics such as covariation, samples and sampling, hypothesis testing (e.g., confidence 

intervals, p-values) and study design. It was completed online, and item-level scores and answer selections were 

retrieved once participants had completed the assessment. 

 

 

LOCUS Tasks 

 

Data to aid in answering both research questions came from teachers‘ written and verbal responses to four 

constructed response released tasks from the Levels of Conceptual Understanding in Statistics (LOCUS) 

assessment (Jacobbe, 2016). The LOCUS assessment was developed to assess middle and secondary level 

students‘ conceptual understanding of statistics (Whitaker, Foti, & Jacobbe, 2015). The items were intended to 

align with the hierarchical developmental levels across the four statistical problem solving process components 

described in the Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report (Franklin et 

al., 2007), as well as the Common Core State Standards for Mathematics (CCSSM) (National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010). All LOCUS items, 

including those that are released, have been extensively reviewed and vetted by experts in the field, including 

multiple authors of the GAISE report, the American Statistical Association/National Council of Teachers of 

Mathematics Joint Committee on Curriculum in Statistics and Probability, the National Science Foundation 

project‘s advisory board and two test development committees (Jacobbe, Case, Whitaker, & Foti, 2014). 

 

The four constructed response LOCUS tasks that were selected for this study were categorized under the 

statistical problem solving process components of data analysis and interpreting results because our second line 

of inquiry was to examine teachers‘ reasoning. Moreover, these tasks were selected based on Huey and 

Jackson‘s (2015) suggestion that tasks be ill-structured and open-ended, and set in a context that is necessary in 

order to respond to the task. Some of the LOCUS tasks were adapted from their original format by removing 

prompts that did not align with the goals of this study.  

 

To illustrate these task features, the New Year‘s Day Race task (see Figure 1) initially prompted participants, 

stating ―Jaron predicted that the mile times of runners in the 5K race would be more consistent than the mile 

times of runners in the half-marathon. Do these data support Jaron‘s statement? Explain why or why not‖ 

(Jacobbe, 2016). This prompt is ill-structured because it does not require a specific solution method, it is open-

ended because it allows for multiple solution paths, and the context is a necessary component to include in any 

response. 

 

The four LOCUS tasks also all require knowledge of center, spread, and shape of distributions. For instance, the 

New Year‘s Day Race task prompt quoted above requires knowledge of spread, yet its open-ended nature allows 

for drawing on less formalized notions of spread such as stating that the mile times of runners in the 5K race are 

less consistent because they are less spread out. This might be paired with a gesture toward the maximum and 

minimum without a specific mention of the range, and it is still a description of spread, albeit a less 

sophisticated one. 
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Figure 1. Histograms presented in the New Year‘s Day Race task. Released item from LOCUS assessment 

(Jacobbe, 2016) 

 

 

Task-based Clinical Interviews 

 

Participants completed two of the four LOCUS tasks in each of two video and audio recorded 60–90 minute 

task-based clinical interviews (Goldin, 1997). Video captured teachers‘ gestures to complement their verbal and 

written responses to the tasks. The interview protocol followed Ginsburg‘s (1981) suggestions by incorporating 

questions designed to require reflection, determine the seriousness of the response, and evaluate the strength of 

the participant‘s belief through challenges to their response whether right or wrong (e.g., Is there another way to 

come to the same result?, Can you think of a valid argument for coming to an opposite conclusion?). 

Furthermore, we followed Goldin‘s recommendations by using ―non-directive follow-up questions‖ (1997, p. 

45) and anticipating as many contingencies for teachers‘ responses as possible—creating such follow-up 

questions for each contingency—and drawing on common student errors for each task described on the LOCUS 

website. 

 

 



152        Engledowl & Tarr 

Data Analysis 

 

Knowledge Structures 

 

Regarding the first research question, data analysis involved constructing maps of teachers‘ knowledge 

structures for the knowledge types of center, spread and shape of distributions from transcripts of teachers‘ 

verbal responses to the four LOCUS tasks, using video of their gestures and any written responses as additional 

evidence, as well as responses to GOALS-2 assessment. Open-coding of transcripts and written responses were 

used to identify constructed knowledge elements and what connections teachers may have drawn between such 

knowledge elements. We followed a similar method to that of Ron and colleagues (2010) and Groth and 

Bergner (2013) that refers to partially-correct constructions (PaCCs), except that this study was cross-sectional 

and not intended to follow the teachers across an a priori learning trajectory.  

 

They are referred to as partially-correct because they include all observed knowledge elements, regardless of 

whether they represent ―impoverished conceptual and procedural knowledge‖ (Groth & Bergner, 2013, p. 250). 

An advantage of tracing the development of knowledge was that Groth and Bergner were able to identify 

missing knowledge elements and which elements contributed to the construction of others. Because this study is 

cross-sectional and unable to identify these features, we use the term knowledge structures to distinguish them 

from Groth and Bergner‘s PaCCs. After maps were constructed for each teacher, a cross-case analysis was 

carried out to identify possible patterns and to create categories for types of knowledge structures. 

 

To construct the maps of teachers‘ knowledge structures, each observed knowledge element related to the 

knowledge element types of center, spread, or shape of distribution was first identified as compatible or 

incompatible, and represented visually by a blue rectangle or a yellow rectangle with rounded edges, 

respectively (see Figure 2). Missing elements were identified for teachers when they explicitly stated they had 

not constructed a particular knowledge element. Such elements were represented as a blue rectangle with an X 

over them. Knowledge elements coded as compatible were those that align with current understandings of the 

content in the field of statistics believed to support conceptual development of other knowledge elements and 

types. Knowledge elements coded as incompatible were those that do not align with current understandings of 

the content in the field of statistics, or would not allow for a compatible knowledge element to be constructed 

from it. 

 

 
Figure 2. Representation of Rosalynn‘s knowledge structure 
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To illustrate, all participants were observed associating the term ―average‖ with the term ―mean.‖ Although this 

association does not necessarily imply that average is defined as mean or that mean is defined as average, all 

teachers consistently replaced average with mean. This is considered incompatible because the term average is a 

much broader term than mean, referring to what is typical. Thus, a unidirectional meaning that average implies 

mean can inhibit more general ways of thinking about what is typical (Leavy & O‘Loughlin, 2006). As can be 

seen in Rosalynn‘s knowledge structure, this way of speaking was coded as ―average as mean‖ and indicated 

with a yellow rectangle with rounded edges. 

 

On the other hand, an example of a compatible knowledge element is that the arithmetic mean is sensitive to 

extreme values. This is compatible because 1) it is a statistically sound knowledge element used consistently in 

the field of statistics and 2) it is supportive of the construction of connections between other conceptions of 

center (i.e., median, mode) and when each would be more appropriate (connections within a knowledge type), as 

well as connections between respective positions of different measures of center based on the shape of the 

distribution (connections between knowledge types). Such connections have empirical grounding for being at a 

hierarchically higher level (Groth & Bergner, 2006). 

 

Statistical reasoning. To aid in answering the second research question, teachers‘ statistical reasoning was 

characterized using Means and Voss‘ (1996) framework for informal reasoning. I employed the use of the 

following questions from their analytic framework: 

1. What claims are being made and what reasons are offered? 

2. Is the reason being offered acceptable and does it support the claim? 

 

Means and Voss (1996) described reasoning as being sound if the reason offered was both acceptable and it 

supported the claim. We used this same language in our coding. Reasons offered for claims were considered to 

be sound if they drew on compatible knowledge elements. To illustrate, if a teacher reasoned (see Figure 1) that 

the mile times for the half marathon runners are more consistent than those of the 5K runners because the mile 

times for the half marathon runners have a smaller range, it would be considered sound because range is a 

compatible knowledge element to reason about consistency (i.e., variability).  

 

Furthermore, comparing the differences in the ranges supports the claim that one group is more consistent than 

the other group. In contrast, suppose a teacher were to reason that the far right bars in the 5K histogram were 

outliers and therefore should be ignored, resulting in the two groups having a similar range for the ―center mass‖ 

and thus the same consistency. This would be identified as unsound because it does not support the claim of 

similar consistency. Although focusing on a subrange of the center of the distribution is a compatible knowledge 

element (e.g., IQR is the spread of the middle 50%), the subranges of the ―center mass‖ of each plot would be 

the same regardless of whether outliers were considered or not. For this study, analysis focused on the task items 

(see Appendix) that required only drawing on knowledge of center, spread, and shape of distributions, and not 

items that required inferential statements. After all responses were coded according to Means and Voss‘ (1996) 

framework, a within-case and cross-case analysis were carried out to identify common themes in teachers‘ 

reasoning. 

 

 

Findings 
 

Cross-case analysis of teachers‘ knowledge structure maps, based on responses to the GOALS-2 (Sabbag & 

Zieffler, 2015) and LOCUS (Jacobbe, 2016) tasks, led to the creation of three categories of knowledge 

structures that are helpful to describing teachers‘ knowledge structures: compatible-connected (3 teachers), 

incompatible-connected (4 teachers), and incompatible-disconnected (2 teachers). Although these categories are 

largely distinct, one incompatible knowledge element was found across all 9 knowledge structure maps—

consistent use of the term ―average‖ when presented with the term ―mean.‖ This is considered an incompatible 

knowledge element because the term ―average‖ is a much broader term than ―mean‖, which could be used to 

indicate a general sense of what is typical. Moreover, such use of the term ―average‖ could be the basis of a 

misconception, such as was observed when both Harrison and Michaela stated that the term ―average‖ can only 

imply the arithmetic mean. The next sections for each knowledge structure category will describe distinguishing 

features both within and between knowledge types (center, shape and spread). 
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Knowledge Structures for Centre, Spread and Shape 

 

Compatible-Connected Knowledge Structures 

 

Three teachers—Tim, Rosalynn, and Mike—had knowledge structures that were categorized as compatible-

connected. The distinguishing features of knowledge structures categorized as compatible-connected can be 

exemplified with Rosalynn‘s knowledge structure map (see Figure 3). The most distinguishing feature was that 

the knowledge structure was highly interconnected, both within and between knowledge element types, and 

incompatible knowledge elements were rare and disconnected. 

 

For example, Rosalynn‘s knowledge structure (Figure 3) indicates multiple connections within each knowledge 

element type, and direct connections across all possible pairs of knowledge element types (e.g., between center 

and spread). More specifically, Rosalynn expressed evidence of connections within the measure of center 

knowledge type while describing a plausible student response to the New Year‘s Day Race task: 

[a student might] say ‗the middle of the graphs are really close together‘, where they have the idea that 

the mean or average is center, but the wrong application of it. So then you can talk about median being 

the actual frequency middle, versus um, arithmetic mean and the calculation that goes into that 

(Rosalynn, New Year‘s Day Race, Line 76). 

In this quote, Rosalynn connects a more general notion of center as ―the middle‖ to the more specific notions of 

center as mean and center as median. Therefore, these knowledge elements are connected within the knowledge 

element type of measures of center. These types of connections were observed for all three knowledge structures 

in this category. 

 

Later on, while responding to the Jumping Distances task, Rosalynn connected the more general notion of ―the 

middle‖ as a measure of center, with the inter-quartile range (IQR) as a measure of spread, thus drawing a 

connection between the two knowledge types. During another task, she provided evidence of a connection 

between center and shape, stating ―with that somewhat symmetric shape your mean and your median are going 

to be about the same‖ (New Year‘s Day Race, Line 24). Furthermore, on the Jumping Distances task, a 

connection was observed between the more general notion of sub-range as a way to understand variability to the 

shape of the distribution of a box-plot by comparing the lengths of each quartile. Therefore, at least one direct 

connection was observed between all three knowledge element types, as was seen across all three knowledge 

structures in this category. This finding is evidence that these three teachers‘ knowledge of center, spread and 

shape was highly integrated. 

 

 
Figure 3. Rosalynn‘s knowledge structure map 
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Incompatible-Connected Knowledge Structures  

 

Similar to compatible-connected knowledge structures, incompatible-connected knowledge structures were 

observed to be highly interconnected both within and between knowledge element types, but, in contrast, they 

all included at least one incompatible knowledge element that was connected to a compatible knowledge 

element. The knowledge structures of Harrison, Michaela, Ruby, and Ellie were categorized as incompatible-

connected. 

 

 
Figure 4. Harrison‘s knowledge structure map 

 

As can be seen in Harrison‘s knowledge structure map (Figure 4), as a case of an incompatible-connected 

knowledge structure, multiple connections were observed within knowledge element types. However, in 

contrast to compatible-connected knowledge structures, Harrison was observed to draw a connection between a 

compatible and incompatible knowledge element within the measure of spread knowledge element type. 

Harrison provided evidence of a compatible knowledge element of spread on the Jumping Distances task when 

he compared the variability in jumping distances for two groups by saying ―from an overall range, or min max, 

it looks like there‘s a difference of about 10 on the high end [gesturing to max of both plots], and like, what 

would that be on the low end, like 15 or so [gesturing to min of both plots], 15, 16 something like that‖ (Line 

18). Further evidence of the range as a measure of spread was provided on the New Year‘s Day Race task when 

he claimed, ―it has a wider, the range is [gesturing to max and min on histogram of 5K runners‘ mile times], I 

guess that‘s the most obvious one that‘s bigger‖ (Line 9). 

 

Despite the evidence of a compatible knowledge element of range as a measure of spread, Harrison‘s focus on 

the end points of the range, rather than as a distance, led him to compare the differences of each of the 5-number 

summary values for the two boxplots on the Jumping Distances task, concluding that ―with the exception of that 

first quartile, everything else is shifted over in that 10 to 15 range, so yeah‖ (Line 19). The notion of shift that 

Harrison fixates on in this instance is concerned with a broader conception of center rather than variability. 

Therefore, the incompatible knowledge element of range to compare location was connected to the compatible 

knowledge element of range within the measure of spread knowledge element type. Further evidence that 

Harrison held both conceptions of range was provided in the New Year‘s Day Race task when he indicated that 

students should focus on the ―center mass‖ and ―ignore the tails‖ (Line 122) when comparing the consistency of 

two data sets. 
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Figure 5. Ruby‘s knowledge structure map 

 

Another common feature of incompatible-connected knowledge structures is that either direct or indirect 

connections were observed between all knowledge element types. An indirect connection is one that passes 

through at least one knowledge element type to get to another knowledge element type, with no direct 

connection between the two. For instance, Ruby‘s knowledge structure map (Figure 5) indicates that she was not 

observed to make a connection between measures of center and measures of shape. However, on the Jumping 

Distances task, when she described the shape of the boxplot (referring to physical features only, an incompatible 

knowledge element) she also described sub-ranges of the data, making a connection to a compatible way of 

thinking more flexibly about spread. Extending the connection, Ruby further indicated that spread should focus 

on the ―center bars‖ of a histogram (New Year‘s Day Race, Line 23 and 105), and that the interquartile range 

(Jumping Distances, Line 12) is preferred for boxplots. This connected the compatible element of a sub-range, 

to the incompatible element that spread should focus on the center portion—much like Harrison did. Completing 

the indirect connection between shape and center, Ruby spoke more generally about comparing centers by 

talking about ―the entire IQR being higher‖ (Jumping Distances, Line 57). As with Ruby‘s knowledge structure, 

all knowledge structures in this category included at least one indirect connection across knowledge element 

types that included at least one incompatible knowledge element. This finding indicates that although these four 

teachers‘ knowledge of center, spread and shape was highly interconnected, incompatible knowledge elements 

were included in those interconnections. 

 

 

Incompatible-Disconnected Knowledge Structures 

 

Similar to the incompatible-connected knowledge structures, incompatible-disconnected knowledge structures 

also included incompatible knowledge elements that were connected to compatible knowledge elements. The 

feature that distinguishes it from the other two categories is that the knowledge elements were largely 

disconnected from one another. The knowledge structures of Amalia and Kathy were categorized as 

incompatible-disconnected. 

 

As can be seen in Kathy‘s knowledge structure (see Figure 6), as a case of incompatible-disconnected structures, 

multiple incompatible knowledge elements were observed. However, this was also true of incompatible-
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connected knowledge structures. Similarly, connections were observed both within and between knowledge 

types, as with the other two categories, and connections were observed between compatible and incompatible 

knowledge elements, as with incompatible-connected structures. The most distinguishing feature of 

incompatible-disconnected knowledge structures was that the majority of the knowledge elements were 

observed to be disconnected from one another. 

 

 
Figure 6. Kathy‘s knowledge structure 

 

This finding indicates that Kathy‘s and Amalia‘s knowledge of center, spread and shape was largely 

disconnected, and when connections were drawn between knowledge types, there were incompatible 

conceptions integrated into the structure. 

 

 

Characterizing Statistical Reasoning 

 

Across all tasks, teachers who offered unsound forms of reasoning—those who drew on incompatible 

knowledge elements or whose reasons did not support their claims—also engaged in sound forms of reasoning 

on those same items. Because of the interview protocol‘s consistent calls for teachers to consider alternate 

arguments that would be considered appropriate justification, four of the nine teachers offered multiple 

arguments—multiple claims or multiple reasons for claims—for 2 of the 3 subparts and all of the teachers 

offered multiple arguments for at least 1 of the 3 subparts. No teacher was observed to engage only in unsound 

forms of reasoning across all task items. However, two teachers, Tim and Rosalynn, engaged in only sound 

forms of reasoning on the three task items analyzed in this study. 

 

Closer inspection also reveals that four other teachers (Mike, Michaela, Amalia, Harrison) offered reasoning 

coded as sound on all three task items, but also engaged in some unsound reasoning simultaneously. The three 
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remaining teachers (Ruby, Ellie, Kathy) were observed to only engage in reasoning coded as unsound on at least 

one task item. The next few sections detail the sound and unsound nature of the teachers‘ reasoning. 

 

 

Knowledge of Shape 

 

The most common cause of a teacher‘s reasoning being coded as unsound was a result of drawing upon 

incompatible knowledge elements of shape. This occurred in two central ways: 1) considering shape to be about 

spread (i.e., that they were the same concept) and 2) connecting shape and spread in incompatible ways. 

 

Shape is spread. Three teachers were observed considering shape and spread to mean the same thing (Ruby, 

Ellie, Kathy). In particular, this occurred on the Jumping Distances task. This task prompted participants to 

compare the center, spread, and shape (explicitly) of the distances that two groups of students jumped—one 

with a target to jump towards, the other with no target (see Figure 7). 

 
Figure 7. Boxplots presented in the Jumping Distances task. Released item from LOCUS assessment (Jacobbe, 

2016). 

 

To illustrate, consider Ellie‘s response regarding spread and shape. Note that she does not offer a description of 

shape until prompted. Just prior to this interaction, she compared the ranges for each group by computing the 

maximum minus minimum. 

Ellie: The box part of the box and whisker plots [tracing outline of center box on each plot], on the no 

target is bigger, so that would mean that more of the data is [gesturing by moving hands inward 

towards middle of box] in the, between the lower quartile and the upper quartile. In that area [gesturing 

to box of no target plot]. So in the [motioning by pushing her hands together], more of the data is in 

that area. 

Researcher: Okay. 

Ellie: Um, yeah. I think that‘s all I have to say, right? 

Researcher: What about shape? 

Ellie: Well, does that not go with the shape? That this is bigger [drawing lines at Q1/Q3 on no target 

plot] than that [marking on target plot]. 

Researcher: Okay. 

Ellie: And so the whiskers are shorter [gesturing to whiskers of no target plot]. That‘s what I was going 

with, with the shape. 

Researcher: Okay. I wasn‘t sure so thank you. 

In this excerpt, Ellie first describes spread by informally comparing the inter-quartile range for each group. It is 

not until she is prompted (―What about shape?‖) that she reveals that she is conceptualizing spread and shape to 

be equivalent. Because of this conception that points to a physical feature (i.e., shape) of the graph that indicates 

a measure of spread, rather than shape of distribution, Ellie‘s reasoning in this instance was coded as unsound 

when speaking of shape. Ruby and Kathy both also drew on conceptions of spread, and yet also drew on 

physical features of the boxplot, as supports for reasoning about shape. 
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Connecting to shape. The second way that teachers‘ reasoning around shape was coded as unsound was when 

they made incompatible connections to shape. This is different from the reasoning of Ellie, Ruby, and Kathy, 

because Ellie, Ruby, and Kathy did not make connections about the relationship between shape and spread, but 

rather considered them to be the same conception. Amalia, on the other hand, recognized that shape would 

impact spread, while Michaela recognized that shape would impact center. However, in the case of Amalia, 

although she drew on compatible knowledge about shape—comparing the whisker lengths to decide symmetry 

and skewness—she used this information in an incompatible manner to determine the spread. For instance, on 

the Jumping Distances task, she states:  

The no target looks to be more symmetric [and the target] is close to be symmetric, but it is slightly 

skewed. So maybe a little more variability, if we look at the largest versus the shortest jump [of the target 

group], where here [no target plot] the largest versus the shortest isn‘t as spread apart. (Line 10) 

In this excerpt from Amalia, she reasons about the spread by conceiving that a more symmetric shape implies 

less variability. It just so happens that in this case, it is true when measuring spread with the total range—the no 

target group has a smaller range and is more symmetric. She was observed making this same claim on the New 

Year‘s Day Race task—using the symmetry to claim more consistency. 

 

In a similar manner, on the New Year‘s Day Race task, Michaela claimed that a skewed right distribution 

implies that the mean (a measure of center) is pulled to the left of the median and a skewed left distribution 

implies that the mean is pulled to the right of the median. Although a relationship between center and shape 

does in fact exist, Michaela‘s conception of this relationship was not in the compatible direction. The mean is 

pulled in the same direction of the skew, not the opposite direction. 

 

 

Knowledge of Center 

 

Other sources of unsound forms of reasoning were related to observations of how teachers described center. 

Mike and Harrison were both observed in this category. For instance, on the Jumping Distances task, Harrison 

was concerned with the idea of shift as a way of comparing centers, claiming that ―with the exception of that 

first quartile, everything else is shifted over in that 10 to fifteen range‖ (Line 19). This idea of shift is concerned 

with a broader sense of center rather than variability. A similar line of reasoning was observed on the New 

Year‘s Day Race task, where he indicated that students should focus on the ―center mass‖ and ―ignore the tails‖ 

(Line 122) when comparing consistency, providing evidence that he believes that range 1) is a measure of 

spread and 2) can be used to compare locations (centers). Therefore, his reasoning comparing consistency on the 

New Year‘s Day Race task, and comparing spread and center on the Jumping Distances task were coded as 

unsound because they drew on incompatible connections between spread and center—that spread can be a 

measure of center. 

 

 

Ignoring Outliers 

 

A last common way that teachers‘ reasoning was coded as unsound was for being dismissive of outliers. 

Harrison and Amalia were both observed reasoning in this way on the New Year‘s Day Race task. However, on 

that task, in particular, the supposed outliers—identified by both teachers as the two far right bars of the 5K 

histogram—account for more than 10% of the 5K runners. Ignoring this large chunk of data is not appropriate 

because 1) it represents a substantial subset of the data and 2) these are assumed to be valid mile times and 

therefore they are necessary for representing the whole of 5K runners‘ mile times—without this subset of the 

data, any claims would be of a smaller subset and not all 5K runners. However, neither Harrison nor Amalia 

were observed altering their claims to accurately depict the subset of data that ignores the supposed outliers—

such as referring to them as the non-walkers. 

 

 

Siloed and Inter-connected Compatible Knowledge  

 

As previously mentioned, across all tasks, all teachers reasoned in ways coded as sound on at least one task. 

Moreover, five teachers (Mike, Michaela, Amalia, Harrison, Ellie) reasoned in ways coded as sound and 

unsound on the same item. Considering the reasoning that was coded as sound, most teachers utilized 

knowledge in a siloed manner—that is, it was more common that teachers did not connect knowledge element 

types of center, spread, or shape, even when provided with an explicit opportunity. 
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The largest opportunity for connecting knowledge types was on the Jumping Distances task, in which teachers 

were asked to compare center, spread, and shape of distribution (see Figure 7). However, on this particular task, 

it was largely infrequent, and teachers tended to describe center, then spread, then shape, all as distinct 

comparisons. As might be expected, teachers whose knowledge structures were described as compatible-

connected and incompatible-connected were observed drawing connections between compatible knowledge 

elements to support sound forms of reasoning. However, the inclusion of incompatible knowledge elements into 

a teacher‘s knowledge structure increased the likelihood of connections between incompatible and compatible 

knowledge elements. Teachers whose reasoning was coded as sound and whose knowledge structures also 

included a connection between at least one pair of compatible knowledge elements from different knowledge 

element types on the Jumping Distances task were (organized by knowledge structure category): 

 Incompatible-connected knowledge structure 

o Ruby (connection between center and spread) 

o Harrison (connections between center and shape; spread and shape) 

o Michaela (connections between shape and spread; shape and center) 

 Compatible-connected knowledge structure 

o Mike (connections between center and shape; spread and shape) 

o Rosalynn (connection between spread and shape) 

o Tim (connections between center and shape; spread and shape) 

 

Considering the possible relationship between knowledge structures and the integration of knowledge element 

types to support reasoning, it is to be expected that all three teachers whose knowledge was classified as 

compatible-connected were observed reasoning in this way. Teachers whose knowledge was classified as 

incompatible-connected could be expected to be less likely to integrate their knowledge to support their 

reasoning in sound forms because of the inclusion of incompatible knowledge elements in their knowledge 

structure. It is of note that Ruby, Harrison, and Michaela were observed to have connections between knowledge 

element types in their knowledge structure that supported reasoning in sound forms, despite observed 

connections with several incompatible knowledge elements in their overall knowledge structures. 

 

 

Discussion 
 

Knowledge Structures and Reasoning 

 

A major finding of this study is that middle and secondary teachers‘ knowledge structures could be described as 

being in three categories—compatible-connected, incompatible-connected, and incompatible-disconnected. 

Looking across these categories, seven of the nine teachers were found to have highly interconnected knowledge 

structures that established connections among the knowledge types of center and spread, with six of the seven 

teachers drawing connections across all three knowledge element types (center, spread, shape). Despite six of 

the nine teachers exhibiting multiple incompatible knowledge elements integrated into their knowledge 

structures, four were simultaneously observed to draw at least one connection between compatible elements of 

center and spread. Conversely, although there was evidence of teachers‘ knowledge structures being highly 

interconnected, teachers struggled to integrate this knowledge. 

 

This finding is consistent with that of  Groth and Bergner (2006), who found that very few elementary 

preservice teachers were able to reason at the highest level with measures of center—which required an 

understanding of when different types of center were more useful than others. In this study, many teachers were 

observed making incompatible generalizations from the connections they drew between knowledge elements of 

center. For instance, on several occasions, across multiple tasks, Ruby insisted that the mean was not an 

appropriate measure of center because it was sensitive to outliers and admitted that the median was her preferred 

measure of center as a result. Thus, she appears to have constructed a belief that the median is always a better 

measure of center because it is not influenced by outliers—despite the fact that outliers should not necessarily be 

ignored. Conversely, Amalia, Ellie, and Michaela indicated that they believed that the mean was always a better 

measure of center because it took the magnitude of the values into account. For instance, Amalia goes so far as 

to call the mean the ―true center‖ (Jumping Distances, Lines 18, 57). These teachers may appear to be at the 

highest level of Groth and Bergner‘s framework because they had developed an understanding of when one 

measure of center may be better than another, and yet they ultimately did not fully comprehend when each 

measure of center was preferable. 

 

Regarding variability, in our study, teachers who recognized standard deviation as a measure of spread from the 

mean largely did not provide evidence that they understood it as intervals around the mean. Although this 
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finding appears to align with Silva and Coutihno‘s (2008), the present study was able to provide a deeper 

inspection of the extent of each teachers‘ conceptions through the carefully constructed interview protocol, 

while Silva and Coutihno were not afforded this luxury in their study that involved a group of teachers in a 

professional learning course context. This also appears to relate to Torok and Watson‘s (Torok & Watson, 2000) 

findings with students across grades 4–10 in Tasmania. Moreover, in our study, most teachers relied on the 

range as a measure of spread, thus not relating it to a measure of center. This may be evidence that such 

teachers‘ reasoning would be characterized within the lower levels of reasoning within Noll and Shaughnessy‘s 

(2012) framework. 

 

Considering teachers‘ knowledge of shape, Ellie and Amalia were observed relating that symmetric distributions 

have less variability than skewed distributions. However, it is of note that teachers were not explicitly asked to 

compare such situations in this study, so it could be more widespread than it appears, as found by Doerr and 

Jacobs (2011), whose study mostly involved preservice teachers. Another major contribution of this study to the 

field is its description of the possible connections between teachers‘ knowledge structures and teachers‘ 

statistical reasoning. In this study, seven of the nine teachers offered more sound forms of reasoning than they 

did unsound forms of reasoning. It is of note that many of the items did not require teachers to draw on multiple 

knowledge elements simultaneously in order to respond. However, even when granted an opportunity for doing 

so, the majority of the time, teachers in this study tended to not only draw on a single knowledge element, but 

they tended to focus only on measures of center unless explicitly prompted otherwise. This finding echoes those 

of Huey (2011), with preservice mathematics teachers, and Watson (2003), with students across grades K–12, in 

that measures of center were the main focus for reasoning from. 

 

 

Implications for Teacher Education and Future Research 

 

Results of this study have several implications for teacher education. In particular, we focus here on tasks that 

encourage integrating knowledge elements within and between knowledge element types, as well as providing 

teachers opportunities to weigh the evidence of the reasoning included in their arguments. Some of the teachers 

in this study had one-sided perspectives, such as that the mean was always better or that the median was always 

better. In these cases, teachers tended to view outliers dichotomously as either always or never ignorable. 

Therefore, teachers need to be exposed to situations in which outliers should and should not be disregarded in 

order to develop a more nuanced understanding that will lead them away from over generalizations that may 

result in inadequate supports to develop compatible conceptions of measures of center. More broadly, teachers 

need opportunities to develop a fuller understanding of how different measures of center are related to one 

another and when each is more useful than the others. 

 

In this study, it was common that teachers focused on range and sub-ranges, rather than considering spread as a 

measure from center. Consequently, they were not considering the center in relation to the spread. Therefore, it 

becomes difficult for teachers who lack this reasoning to respond to students who do reason in such ways, and 

can result in inadvertently persuading students away from more complex ways of reasoning. Teachers should be 

provided opportunities to informally explore the connections between spread and center to promote 

development of more robust conceptions. 

 

In addition to tasks that are designed to provide teachers opportunities to consider multiple knowledge elements 

and knowledge element types simultaneously, teachers need opportunities to weigh the evidence they draw on 

when engaging in statistical reasoning. For instance, in this study, all teachers engaged in both sound and 

unsound forms of reasoning—many times on the same task item. As a result of the interview protocol, teachers 

were confronted with different ways of reasoning—either directly by the interviewer or from responding with 

different ways of reasoning themselves. This presented the opportunity to weigh the evidence to support the 

claims they had made. In the process of weighing the evidence, teachers had opportunities to reconstruct their 

arguments, thereby strengthening them, while also evaluating the quality of their arguments. Therefore, teacher 

professional learning programs focused on statistics should provide opportunities for teachers to both construct 

and respond to multiple arguments and explore their validity. It is of note that although teachers benefited from 

considering multiple arguments and evaluating them, it was rare that a teacher engaged in this practice 

spontaneously. Therefore, professional learning of statistics should incorporate use of statistical investigations 

that encourage teachers to ―construct viable arguments and critique the reasoning of others‖ (National 

Governors Association Center for Best Practices & Council of Chief State School Officers, 2010, p. 6)—or in 

the statistics language of this practice, ―compare the plausibility of alternative conclusions and distinguish 

correct statistical reasoning from that which is flawed‖ (Franklin et al., 2015, p. 14). 
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This study provided multiple points of evidence to support the existence of connections that were observed 

between knowledge elements of teachers‘ knowledge structures. However, more research is needed to ascertain 

the strength of such relationships. Such investigations might aid in explaining differences in teachers‘ 

knowledge structures that may appear to be similar but whose reasoning indicates salient differences in how that 

knowledge is applied. Moreover, teachers‘ knowledge structures need to be examined as they develop—similar 

to Groth and Bergner (2013). A benefit of such a design would be that the formation of incompatible elements 

could be explained, and this could lead to the development of interventions to foster the development of 

compatible constructions of knowledge elements and the connections between them—thereby providing more 

adequate support for more complex forms of reasoning. Ultimately, such research could inform a more 

purposeful design of professional development programs recommended by The Statistical Education of 

Teachers report (Franklin et al., 2015) and in two chapters of the International Handbook of Research in 

Statistics Education (Ben-Zvi, Gravemeijer, & Ainley, 2018, Chapter 16; Ponte & Noll, 2018, Chapter 14). 

 

 

Concluding Thoughts 
 

This study contributes to the growing need to understand middle and secondary teachers‘ knowledge structures 

for measures of center, spread and shape, and how they may support statistical reasoning (Langrall et al., 2017). 

Moreover, these concepts, and their inherent interconnections, are vital to higher levels of reasoning, and also 

appear to be difficult for teachers and students to integrate (Franklin et al., 2007; Groth & Bergner, 2006; Silva 

& Coutinho, 2008). More importantly, in order to support development of the ―inner logic of statistical 

inference‖, knowledge of center, spread and shape must be integrated into a ―sophisticated network of ideas‖ 

(Saldanha & Thompson, 2014, p. 28). Therefore, this study offers insights into how teachers may have 

conceptualized and connected compatible and incompatible knowledge elements for center, spread, and shape 

and how such knowledge structures may impact their reasoning. 
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Appendix. New Year’s Day Race 
 

The city of Gainesville hosted two races last year on New Year‘s Day. Individual runners chose to run either a 

5K (3.1 miles) or a half-marathon (13.1 miles). One hundred thirty-four people ran in the 5K, and 224 people 

ran the half-marathon. The mile time, which is the average amount of time it takes a runner to run a mile, was 

calculated for each runner by dividing the time it took the runner to finish the race by the length of the race. The 

histograms show the distributions of mile times (in minutes per mile) for the runners in the two races. 

 

 
 

 
 
(a) Jaron predicted that the mile times of runners in the 5K race would be more consistent than the mile times of 

runners in the half-marathon. Do these data support Jaron‘s statement? Explain why or why not. 

 

(b) Sierra predicted that, on average, the mile time for runners of the half-marathon would be greater than the 

mile time for runners of the 5K race. Do these data support Sierra‘s statement? Explain why or why not.   
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Jumping Distances 

 

Students wanted to investigate whether the distance a male student can jump is affected by having a target to 

jump toward. The students decide to perform an experiment comparing two groups. One group will have male 

students jumping toward a fixed target, and the other group will have male students jumping without a fixed 

target. There are 28 male students available for the experiment. 

 

After randomly assigning each male student to one of the two groups, data were collected on the length (in 

centimeters) of the jump for each male student. The data for 28 male students are summarized in the boxplots 

below. 

 

 
 
(a) Based on the boxplots, how do the lengths of the jumps compare for the two groups. Make sure to compare 

center, variability, and shape. 

 


