The Effect of the Blended Project-based Learning Model and Creative Thinking Ability on Engineering Students' Learning Outcomes

R. Mursid
Universitas Negeri Medan, Indonesia

Abdul Hasan Saragih
Universitas Negeri Medan, Indonesia

Rudi Hartono
Universitas Ibn Khaldun Bogor, Indonesia

To cite this article:
The Effect of the Blended Project-based Learning Model and Creative Thinking Ability on Engineering Students' Learning Outcomes

R. Mursid, Abdul Hasan Saragih, Rudi Hartono

Abstract
This research examines the effect of the blended project-based learning (PjBL) model and creative thinking ability on engineering students' drawing learning outcomes. Using a pre and post-test quasi-experimental design, the research included a sample of 80 students from two different classes at the Faculty of Engineering, UNIMED, North Sumatra, Indonesia. The data were analyzed using descriptive and inferential statistics through two-way ANOVA. Subsequently, the results showed that the members of experimental group I, comprising students who participated in the blended PjBL model, obtained the highest engineering drawing learning outcomes. The creative thinking ability outcomes of the students taught with this model were higher than those of the group II students who used the ordinary blended learning model. However, those with low thinking abilities taught with the ordinary model exhibited higher learning outcomes than the experimental group. These results show an interaction between the effect of the PjBL model and creative thinking ability on the learning outcomes of engineering students. Therefore, lecturers need to use a blended PjBL model to ensure improved outcomes, alongside enhancing students' creative thinking abilities to increase the model's effectiveness.

Introduction

The use of learning media during the teaching process can generate new desires, motivation, stimulate learning activities, and even exert psychological effects on students (Junaidi, 2019; White, 2020). These media signify a promising factor for learning processes in the Information and Communication Technology field (Budiman, 2017; Tadeu et al., 2019). Therefore, lecturers should understand technological advances to avoid providing outdated information to students. They should act as facilitators for students, especially in utilizing various forms of learning media to ensure teaching and learning activities are more effective, efficient, and not monotonous (Kalimullina et al., 2021; Keskin, Akcay, & Kapici, 2020; Muna & Hadisi, 2015; Mursid & Yulia, 2016; Surani, 2019; Williams et al., 2021).

Generally, engineering drawing courses are mandatory for students of mechanical engineering education, and
such courses necessitate their ability to create and read engineering drawings. The students should comprehensively explain the parts or components while planning the development of machine-building construction through information in drawing lines based on ISO standards. According to Panjaitan et al. (2020), engineering drawing is appropriate for conveying ideas to others. The study specifically stated that “information transmission is an important function for language or drawings. Therefore, drawings are expected to include accurate and objective information obtained from visual drawings, symbols, and standards. It is an idea or abstract concept that is realized with drawings.” Hence, engineering drawing functions as a medium for delivering communicative information because drawings can be understood, measured (have a scale), accurate (precision), effective (used right), and aesthetic (beautiful). However, these drawings should not be interpreted differently by people who observe them (Alfajri & Nasution, 2016; Panjaitan et al., 2020). Therefore, certain signs or standards contained in the International Organization for Standardization (ISO) are required as a collective agreement.

Orthogonal projection drawings are used to provide accurate and complete information of three-dimensional objects placed parallel to the projection plane, particularly the vertical plane (Mesin et al., 2015; Mursid, 2016; Waluya & Wiyono, 2015). The projection material requires an example of real or almost real media, as students should be able to draw theoretical and orthogonal projections (Kurniawan et al., 2016). Meanwhile, an orthogonal projection is a drawing in which the projection plane has a perpendicular angle to the projector. It has several views, including the front, top, side, and visual aspects, and is classified into two types, namely the European and American systems. Generally, these projections are used to clarify drawing information to look real and realize and describe three-dimensional objects (Mesin et al., 2015; Oky Purmadi & Dwi Handayani, 2018).

Project-Based Learning (PjBL) is a strategy that can improve various competencies such as academic achievement, thinking levels, critical thinking, problem-solving ability, creativity, independence, and it presents the ability to see situations from a better perspective. It also offers a deeper understanding of learning, more positive attitudes towards studies, supportive relationships among peers, flexibility in communication, and learning motivation (Azizah & Widjajanti, 2019; Manshur, 2020; Zubaidah et al., 2017). Furthermore, it is one of the models that support student-centered learning (SCL), which is currently a challenge for university learning. The PjBL model prepares assignments based on complex problems for students to investigate in groups (Linda et al., 2019; Prajanto, 2020). It also provides opportunities for students to become more active in learning, as they are encouraged to ask, investigate, explain, and interact with problems. Furthermore, students are asked to generate and present the products from the investigation results. As stated by the previous study, PjBL is an individual or group project executed within a certain period to create a product and present results. Besides developing and using various learning resources, taking an active or student-centered learning approach is necessary.

Therefore, this research uses ICT-based multimedia learning in the Blended PjBL model, which combines projects given virtually or online to students with theories taught during face-to-face learning. It is a new learning concept where material can be delivered in class and online. Blended learning is defined as combining
the advantages of e-learning, face-to-face, and practice (Matarirano et al., 2021; Omodan & Diko, 2021; Tsakeni, 2021). Abdullah (2018) stated that this form of learning combines media, models, theories, face-to-face, and online methods. Hence, blended learning can be concluded to be a combination of all learning modes.

This research applied the concept that combines blended learning with PjBL, meaning the process was conducted face-to-face and online through LMS media. The concept is called the "Blended Project-Based Learning Model," which may allow students to improve their HOT abilities. Moreover, utilizing information technology in multimedia learning development is expected to be an innovation in teaching and learning. Based on the preliminary results and previous research, this research aims to analyze the effectiveness of applying the blended PjBL with ICT-based multimedia learning on student learning outcomes using the LMS data analysis technique. The subsequent results can design interactive multimedia learning methods that can improve student activities and learning outcomes.

Theoretical Background

Engineering Drawings

Engineering drawings have more specific meanings and scopes in the engineering field and have been used to design machines, vehicles, or war strategies. This situation is visible from various artifacts of drawing results and equipment in museums, building reliefs, or other historical relics. Previously, drawings functioned only as thinking tools and concepts, so rules were not needed.

Subsequently, engineering drawings have developed concepts into functions "to convey information" and "way of thinking." A public standard was also created due to the need for a comfortable language. Generally, standards and rules are used to unify the perceptions and intentions of a draftsman and a product maker. Some currently in use include ANSI (American National Standard Institute), DIN (Deutsche Industrie Normen), ISO (International Organization of Standardization), JIS (Japanese Industrial Standard), NNI (Nederland Normalisatie Institute), and NIS (National Indonesian Standard).

Engineering drawing is similar to language and requires a set of 6 rules for proper use. Conversely, there are two basic rules in English, first, the 'word order,' which provides information about the subject and object, and second, spelling and information about the word itself, such as nouns and verbs. Generally, engineering drawings need to communicate legally binding information through various specifications. Therefore, several requirements should be met, namely (1) clarity, (2) completeness, (3) the ability to be duplicated. (4) non-dependence on a particular language, and (5) appropriateness with standards. Although different standards are applicable in each country, the 'highest' is the ISO, which applies worldwide. However, companies and industries have those specific to them.

Meanwhile, a projection drawing depicts a point, object, line, field, or view on a plane (Fakhri et al., 2019). Hence, it refers to a shadow coming from real or imaginary objects in the drawing field observed from certain points of view. Orthogonal projections have several characteristics. These are (1) they can provide precise and
complete information of a 3D object, (2) the object is placed parallel to the projection plane, (3) cannot completely describe the object with only one projection, (4) Only a few areas are taken, and (5) combining the projection produces a clear drawing. The orthogonal projections for working drawings use horizontal and vertical planes (Kendal et al., 2020).

Quadrant I, or the European projection, is a drawing where the object is located between the observer and the plane. This projection-type appears as though the object was pushed into the plane (Fitria et al., 2019). Three areas are usually used during its demonstration: the front, top, and side, while the object is placed in quadrant I. Hence, the projection will occur on the horizontal, vertical, and front planes (see Figure 1).

Quadrant III, or the American Projection, involves placing the object in front of the plane between the observer and the object. The object appears to be pulled into the plane during projection, so the sightline is drawn towards the projection plane (see Figure 2 and 3).
The Blended Project-Based Learning Model

Blended learning requires widely accessible learning opportunities and resources. Etymologically, the term consists of two words, "blend," meaning "to mix to produce better quality" (Collins Dictionary), and "learning," which generally means "to study." Therefore, "blended learning" means combining one learning pattern with another. Tyley (2012) stated that blended learning refers to a course that combines face-to-face classroom instructions with online learning, thereby reducing classroom contact hours and sitting time.

The last point is an important distinction because enhancing regular face-to-face courses with online resources without changing the class contact hours is also possible. It is called hybrid learning and combines the characteristics of traditional schools with online learning benefits for personal delivery by providing different instructions for each group (Watson et al., 2020). This innovative concept includes the advantages of traditional and ICT-supported learning (Abass et al., 2021; Garcia, 2021; Monkeviciene et al., 2020; Ndibalema, 2021; Seage, & Türegün, 2020; Subedi & Subedi, 2020; Wahyudi, 2020; Wahyudi & Winanto, 2018). According to Carman (2002), there are five keys to applying blended learning: life events, independent learning, collaboration, assessment, performance, and supporting materials.

Meanwhile, blended PjBL is a model that allows students to manage online and offline learning of engineering drawing project works (Hasyim, 2020; Rachmah, 2019). It is student-centered and involves learning via a project activity. A project contains complex tasks based on challenging questions, problems, and engineering drawings, and requires students to design, solve problems, make decisions, investigate, and work independently. Performance assessment on PjBL can be conducted by calculating the individual's product quality, understanding of the content, and contribution to the ongoing project realization process. PjBL allows students to reflect on their ideas and opinions, decide the factors that affect their learning process and outcomes, and then present the final product.

This learning model can be used to condition active student-centered learning, facilitate a more interesting learning experience, and produce works based on real, contextual daily problems. It can emphasize science skills by observing, using tools and materials, interpreting, planning projects, applying concepts, asking questions, and enabling appropriate communication. Moreover, it develops students' creative thinking ability in designing and creating projects that can proffer systematic solutions to problems. Therefore, this model can develop HOT in implementing scientific (Observing, Associating, Trying, Discussing, and Communicating) and 21st-century learning (4Cs: Critical thinking, Collaboration, Creative, and Communication).

According to Lestari and Isnania (2019), the steps of the PjBL model are as follows:

1) Opening the lesson with challenging questions (start with the big question): Learning begins with a driving question that can assign students to execute an activity.

2) Planning the project (design a project plan): Planning is performed collaboratively between the students, who are expected to have a sense of ownership, and the lecturers.

3) Arranging a schedule of activities (create a schedule): Lecturers and students collaboratively arrange
activity schedules for completing projects. The time should be clear, and students may be directed to manage.

4) Supervising the project (monitor the students and project progress): Lecturers are responsible for monitoring the students' activities while completing the project. This step is performed by facilitating students during each process.

5) Assessing the resulting product (assess the outcome): The assessment is conducted to assist lecturers in measuring the achievement of standards and evaluating the student's progress.

6) Evaluating (evaluate the experience): At the end of the learning process, lecturers and students reflect on the activities and project results obtained.

Therefore, blended PjBL is more student-centered, as students are required to acquire and integrate new knowledge obtained from the results of projects assisted by lecturers as the facilitators.

Creative Thinking Ability

Creative thinking is an original and elaborate way of producing complex products. It is often referred to as divergent thinking because it begins with one problem but involves numerous solutions that can be applied extensively with many possibilities. Creative thinking can be defined as a whole series of cognitive activities individuals use according to certain objects, problems, and conditions. It also refers to various efforts towards events and problems based on individual capacities. Mahanal and Zubaidah (2017) stated that creative thinking is the ability to formulate new ideas that are surprising and valuable in numerous ways. It is related to novelty, the ability to create an entity, apply new forms of development, produce many imaginative abilities or transform an existing object into a new product (Kumdang et al., 2018; Sahida & Zarvianti, 2019). Furthermore, Munafiah et al. (2019) defined creative thinking as a unique form of self-expression.

Meanwhile, various indicators of creative thinking have been expressed by several experts. According to Joklitschke et al. (2018) and Zubaidah et al. (2017), creative thinking has five indicators, namely (1) fluency, defined as the ability to generate ideas, methods, suggestions, questions, and alternative answers fluently in a certain time. (2) Flexibility involves obtaining various ideas, answers, or questions from different points of view by changing the method of thinking and the approach used. (3) Originality, referring to the ability to create phrases, ways, or ideas to solve a problem in unusual and unique combinations of elements that other people do not visualize. (4) Elaboration means the ability to enrich, develop, add, describe, or specify details of objects, ideas, products, or situations to become more interesting. (5) Metaphorical thinking involves using comparisons or analogies to make new connections.

Students' different abilities require conditions involving learning experiences that develop their potential for creative thinking (Al-Husban, 2020; Kilinc et al., 2018; Yusnaeni et al., 2017). Since creative thinking can be included in learning, lecturers should implement the mandate for this development. This finding corresponds with the opinions of Zubaidah et al. (2017) and Nasir (2018), which stated that the lecturer is tasked with providing the best conditions for students to acquire relevant or important thinking abilities. Purnama (2020 and Ramdhani and Kiswanto (2020) stated that facing the challenges of the dynamic and uncertain modern life is
necessary to develop creative thinking abilities in learning. These abilities are the basis of science (Asy'ari & Fitriani, 2017; Etherington, 2019; Zarah et al., 2021) and need to be developed through learning, especially engineering drawing.

Research Objective

The purpose of this research is to examine the effect of blended PjBL models and creative thinking ability on students’ achievement of engineering drawing learning outcomes.

Method

Research Model

This research employed a quasi-experimental design to determine the effect of independent variables, i.e., the blended PjBL and blended learning models, alongside high and low creative thinking abilities, on the dependent variable, namely engineering drawing learning outcomes. Table 1 shows the 2 x 2 factorial experimental design.

<table>
<thead>
<tr>
<th>Creative Thinking (I)</th>
<th>Blended PjBL Model (A1)</th>
<th>Blended Learning (A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (B1)</td>
<td>A1 B1</td>
<td>A2 B1</td>
</tr>
<tr>
<td>Low (B2)</td>
<td>A1 B2</td>
<td>A2 B2</td>
</tr>
</tbody>
</table>

Research Procedure

Before conducting the research, the lecturers assigned to teach the experimental group were trained on using the blended PjBL model for the drawing course in the mechanical engineering education department. Topics, teaching objectives, and learning media were provided for the eight weeks of treatment. The lecturer meant to instruct experimental group I about the textbook material on orthogonal drawings in the American and European projection systems was also given eight weeks of treatment. Meanwhile, the lecturers in both groups had the same topics and teaching objectives.

For the first week, the students in the two groups were faced with a creative thinking questionnaire to determine their ability levels and separate them into high and low categories. Then, the experimental group I followed a PjBL model for several weeks, while group II only used the blended learning model. The learning processes in the experimental group I were observed to examine the accuracy with which the prepared stages were followed. Also, group II was monitored four times to ensure the use of the blended learning model.

In experimental group I, the lecturers introduced the topic and explained the American and European projected drawing systems to the students. They followed the PjBL stages, including (1) contextually introducing the
engineering drawing problems and (2) designing a project planning assignment of one to six views based on the stages. Furthermore, they obeyed the other steps by (3) arranging a schedule of student activities to be conducted according to the agreed project assignments, (4) observing and monitoring work based on the stages given through Edmodo, and (5) conducting an assessment of the learning process.

In addition, the lecturer guided students to identify and formulate related project assignments, design data collection instruments, analyze and collect the assignments. Then, they were asked to draw conclusions and present their work on the engineering drawings of American and European system projections with six complete views on the beam to the machine component media. The lecturers helped the students to revise, where necessary, and evaluate their understanding of the topics investigated during the group presentations. At the end of the lesson, they revised the learned topics. The procedure lasted for six weeks, was held three times per week, and was implemented online through a blended learning approach on the Google Classroom application.

Also, the topic was introduced and discussed by the lecturers using a textbook and online methods based on the blended learning approach in experimental group II. The students' levels of understanding were evaluated by asking questions before the classes ended. This procedure lasted for six weeks, holding thrice a week. Hence, the topic and duration in both groups were the same.

Research Sample

The population used in this research comprised first-semester students in the mechanical engineering education (S1) and the automotive engineering education (S1) study programs in the mechanical engineering department, engineering faculty, UNIMED, Indonesia. After the homogeneity test was conducted, class A was assigned as the experimental group I to evaluate the blended PjBL model. Conversely, class B students were designated to group II and examined using the blended learning model. The sample consisted of 80 students, equally divided into two parts, where 40 had high creative thinking ability, while the other half was low. As shown in Table 2, the groups involved 20 students with high and low creative thinking abilities each.

<table>
<thead>
<tr>
<th>Blended Learning Model</th>
<th>Class A</th>
<th>Class B</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Thinking Ability</td>
<td>PjBL-Based Blended Learning Model</td>
<td>Blended Learning Model</td>
<td>N</td>
</tr>
<tr>
<td>High</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Low</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

This research was conducted from August - November 2020, and the engineering drawing courses taught included orthogonal, axonometric, multiple views, American and European systems, and working projections. The American and European system projection drawings comprised a front view, alongside two, three, four, five, and six views.
Research Instruments

This research used a post-test to measure the engineering students' drawing learning outcomes and creative thinking abilities. The pre-test and final test consisted of 30 multiple-choice questions each. Two experienced engineering drawing lecturers, who had been teaching for over five years and were selected from other classes to avoid research bias, checked and validated the post-test questions and answers. Subsequently, the reliability coefficients for the multiple-choice questions were found to be 0.86 (KR-21) and 0.87 (KR-20), meaning the question were reliable.

The creative thinking ability questionnaire consisted of 30 Likert-type items adopted and modified the research objectives and ranged from 'strongly agree' (4 points) to 'strongly disagree' (1 point). Then, each student's total score was assumed to represent their interests. Before the actual data collection, a trial was conducted using 20 students from the mechanical engineering study program in the engineering faculty of UNIMED, Indonesia. This trial showed that the blended learning model and data collection instrument were understandable. The questionnaire attained a Cronbach's Alpha 0.745, higher than the acceptable value of 0.60 proposed by Sekaran and Bougie (2013). Then, the obtained data were analyzed using the two-way Analysis of Variance (ANOVA).

Data Analysis

According to Chu and Chang (2017), a two-way ANOVA is used to test the effect of the main factors and interactions in a 2x2 experimental factorial design. Subsequently, this was performed by classifying the variables into two approaches, namely the blended PjBL and ordinary blended learning models. The moderator variables were also categorized into low and high creative thinking abilities. Then, the statistical analysis requirements were examined for normality and homogeneity using the One-Sample Kolmogorov-Smirnov Test and Levene's Test of Equality of Error Variances, respectively. Supposing these results indicated an interaction between the independent and dependent variables, a posthoc analysis of variance using Tukey's test or Tukey's Honestly Significant Difference (HSD) was employed for in-depth testing of the research hypothesis.

Results and Discussion

The hypotheses in this research are the following:

1. There is a significant difference between the average values of engineering drawing outcomes of the two learning approaches.
2. There is an interaction between the influence of the blended learning model in the achievement of engineering drawing learning outcomes and the students' creative thinking abilities.
3. The learning outcomes of the students who have higher creative thinking abilities and are taught using the blended PjBL are greater than those that applied the ordinary blended learning model.
4. The learning outcomes of engineering drawing students with lower creative thinking abilities taught using the blended PjBL are lower than using the ordinary blended learning model.

Data analysis was performed using the Statistical Package for Social Sciences (SPSS) 25.0TM.
Table 3 shows the statistical analysis results confirmed by normality and homogeneity tests using the One-Sample Kolmogorov-Smirnov Test and Levene's Test of Equality of Error Variances, respectively.

<table>
<thead>
<tr>
<th>Data Group</th>
<th>Normality</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final test</td>
<td>N</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.261</td>
</tr>
</tbody>
</table>

As shown in Table 3, the research data were normally distributed, and all variants were homogeneous ($p > 0.05$). Table 4 shows the statistics description about the scores in the models.

The two-way ANOVA results are presented in Table 5.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>430.300</td>
<td>3</td>
<td>143.433</td>
<td>13.594</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>533337.800</td>
<td>1</td>
<td>533337.800</td>
<td>50547.042</td>
<td>.000</td>
</tr>
<tr>
<td>Model</td>
<td>217.800</td>
<td>1</td>
<td>217.800</td>
<td>20.642</td>
<td>.000</td>
</tr>
<tr>
<td>Thinking</td>
<td>211.250</td>
<td>1</td>
<td>211.250</td>
<td>20.021</td>
<td>.000</td>
</tr>
<tr>
<td>Model * Thinking</td>
<td>1.250</td>
<td>1</td>
<td>1.250</td>
<td>.118</td>
<td>.732</td>
</tr>
<tr>
<td>Error</td>
<td>801.900</td>
<td>76</td>
<td>10.551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>534570.000</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1232.200</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .349 (Adjusted R Squared = .324)

Table 5 shows that the first and second research hypotheses were rejected. Hence no further tests were conducted.
A significant difference between the average values of both models' engineering drawing learning outcomes can offer a suitable approach for improving students' outcomes. Subsequently, this research obtained average scores of 81.05 and 80.00 for the blended PjBL and the ordinary blended model, respectively. These results correspond with the statement that the blended PjBL model improves students' engineering drawing learning outcomes (Afifah & Wahyudi, 2019; Priono et al., 2019; Susilawati et al., 2020). Hence, the significant difference between the students' achievement levels may be due to the learning model. This finding supports the views of Pengabidian et al. (2012) and Sucipto (2017), which argued that blended PjBL is efficient in improving academic understanding and student learning outcomes of engineering drawing.

Meanwhile, the blended PjBL model did not affect the interaction between the ordinary blended model and the students' creative thinking ability. The blended PjBL model facilitates the students' achievement and is better than the ordinary strategy (Ekayati, 2018; Triyanto & Prabowo, 2020; Usman, 2019). However, students with low creative thinking abilities showed poorer learning outcomes with the blended PjBL compared to the ordinary blended model. This finding corresponds with research by Ayu and Tri (2019) and Ariyantini (2017), which implied interaction between the influence of blended learning strategies and creative thinking ability on students' engineering drawing learning outcomes.

The effectiveness of the blended PjBL model approach is related to students' characteristics. Therefore, lecturers need to apply this fact in determining the best model to facilitate their learning. In this case, the average student learning outcomes of the engineering drawing competence were higher with the blended PjBL than the ordinary blended learning model. In addition, students with high creative thinking abilities that employed the blended PjBL model had a higher average learning outcome of 85.05 than those in the ordinary blended learning group, who had a score of 81.50. This result means that the active model, i.e., the cooperative approach and PjBL is more suitable for students with high creative thinking abilities during the learning process (Antika & Nawawi, 2017; Fatmawati, 2011; Sari & Angreni, 2018).

The characteristics of students with high creative thinking abilities include self-motivation, optimism, independence, high ability, empathy, personal goals, and responsibility (Syaparuddin & Elihami, 2017). Applying learning motivation for success and individual responsibility is important to support the effectiveness of the blended PjBL model, as these two factors encourage students to help each other during learning. However, the absence of these two factors results in the lack of interest to improve their learning outcomes (Nasution, 2018; Pilotti & Al Mubarak, 2021; Tarbutton, 2018). This finding is in line with research by Lailiana and Handayani (2017) and Hapsari (2017), which stated that two factors needed to obtain academic achievement are group goals or motivation for success and individual responsibility.

Fourth, students with low creative thinking abilities taught using the blended PjBL model had a lower average value of learning outcomes than the ordinary blended model. Generally, the ordinary model is more effective for such individuals because it does not require teamwork, gives students responsibility for learning, and is challenging in learning engineering drawing (Ariyantini, 2017; Winaryati, 2018; Yusuf Sukman, 2017). This approach will allow these students to follow the learning process facilitated by the lecturer easily. Hence, the
blended PjBL model can be concluded to be ineffective for students with low creative thinking abilities (Adisendjaja & Sanjaya, 2021; Susilowati & Dewantara, 2021).

In addition, students with low creative thinking abilities avoid taking active responsibility for their learning and show less confidence in completing tasks. According to Kurniawan et al. (2016), Yulianto (2015), Kusuma and Muttaqin (2019), and Waluya and Wiyono (2015), students quickly learn the basic skill of creating orthogonal drawings through various types of tasks based on the lecturer's directions and explanations in the ordinary blended model. This result supports the studies by Yustina et al. (2020), Wahyudi and Winanto (2018), Yustina et al. (2020), and Garrison and Kanuka (2004), which affirmed that blended learning is beneficial for students that possess low self-confidence and skill in completing their assignments because the use of applications has not been properly mastered.

Based on the results, blended PjBL and the ordinary blended learning models can significantly influence the engineering drawing learning outcomes of students. Also, the blended PjBL model seems to greatly affect students (Kurniawan et al., 2016; Kusuma & Muttaqin, 2019; Waluya & Wiyono, 2015; Yulianto, 2015). The interaction between the effect of the blended PjBL model on the learning outcomes of engineering drawing and the students' creative thinking abilities revealed that this strategy is more effective for individuals with high-creative thinking abilities. However, the ordinary blended model without the project-based learning approach is more efficient for students with low emotional intelligence.

Conclusion

Consequently, this research recommends the application of blended PjBL for teaching engineering drawing, especially orthogonal projection material in the American and European systems, with several views to improve student learning outcomes. Enhancing students' learning outcomes in engineering drawing can help them achieve a high quality of life and knowledge in their field, solve social problems, develop their interests and talents, and adapt to the necessary science and technology development in the 21st century. However, their creative thinking ability needs to be improved to ensure the PjBL strategy is applied effectively. Since this research was limited to engineering drawings for orthogonal projections in the American and European systems with six compound views conducted during the first semester, further research needs to be performed on different subjects. They can focus on other learning outcomes, such as machine elements, engineering mechanics, machining, forming, and welding technology.

Acknowledgments

The authors are grateful to the Institute for Research and Community Service and the Department of Mechanical and Automotive Engineering Education, Faculty of Engineering, UNIMED Medan, North Sumatra, Indonesia, for their kindness and help during this research.
References

Auther Information

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Mursid</td>
<td>Universitas Negeri Medan</td>
</tr>
<tr>
<td>https://orcid.org/0000-0002-4049-5322</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Contact e-mail: mursid@unimed.ac.id</td>
<td></td>
</tr>
<tr>
<td>Abdul Hasan Saragih</td>
<td>Universitas Negeri Medan</td>
</tr>
<tr>
<td>https://orcid.org/0000-0001-9533-4422</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Rudi Hartono</td>
<td>Universitas Ibn Khaldun Bogor</td>
</tr>
<tr>
<td>https://orcid.org/0000-0002-3013-0178</td>
<td>Indonesia</td>
</tr>
</tbody>
</table>